**[20/50 points]**In the derivation of the Robertson-Sparck-Jones (RSJ) model, a multivariate Bernoulli model was used to model term presence/absence in a relevant document and a non-relevant document. Suppose, we change the model to a multinomial model (see the slide that covers both models for computing query likelihood). Using a similar independence assumption as we used in deriving RSJ, show that ranking based on probability that a document is relevant to a query Q, i.e., p(R=1|D,Q), is equivalent to ranking based on the following formula:where the sum is taken over all the words in our vocabulary (denoted by V), and c(w,D) is the count of word w in document D (i.e., how many times w occurs in D). How many parameters are there in such a retrieval model that we have to estimate?

**[5/50 points]**The retrieval function above won't work unless we can estimate all the parameters. Suppose we use the entire collection C={D1,...,Dn} as an approximation of the examples of non-relevant documents. Give the formula for the Maximum Likelihood estimate of p(w|Q,R=0).**[5/50 points]**Suppose we use the query as the only example of a relevant document. Give the formula for the Maximum Likelihood estimate of p(w|Q,R=1) based on this single example of relevant document.**[5/50 points]**One problem with the maximum likelihood estimate of p(w|Q,R=1) is that many words would have zero probability, which limits its accuracy of modeling words in relevant documents. Give the formula for smoothing this maximum likelihood estimate using fixed coefficient linear interpolation (i.e., Jelinek-Mercer) with a collection language model.**[15/50 points]**With the two estimates you proposed, i.e., the estimate of p(w|Q,R=0) based on the collection and the estimate of p(w|Q,R=1) based on the query with smoothing, your should now have a retrieval function that can be used to compute a score for any document D and any query Q. Write down your retrieval function by plugging in the two estimates. Can your retrieval function capture the three major retrieval heuristics (i.e., TF, IDF, and document length normalization)? How?

**2-[20/50 points]** One way to check whether a retrieval function would over-penalize a long document is to do the following: Imagine that we duplicate a document D k times to generate a new document D' so that each term would have k times more occurrences (naturally, the new document D' is also k times longer than the original D). Intuitively, the score for D' shouldn't be less than the score of D for any query. Check if this is true for the query likelihood retrieval function with both Jelinek-Mercer smoothing and Dirichlet prior smoothing, respectively.

Assignment Writing Help

- Science Assignment Help
- Math Assignment Help
- Chemistry Assignment Help
- Physics Assignment Help
- Biology Assignment Help
- Psychology Assignment Help
- History Assignment Help
- Geography Assignment Help
- English Assignment Help
- Humanities Assignment Help
- Nursing Assignment Help
- Social Science Assignment Help
- Arts and Architecture Help
- Statistics Assignment Help
- Law Assignment Help
- Computational Mathematics Assignment Help

Engineering Assignment Services

- Programming Assignment Help
- Database Help
- Data Structure Assignment Help
- Operating Systems Assignment Help
- Computer Network Assignment Help
- UML Diagram Assignment Help
- IT Assignment Help
- Game Programming Help
- Computer Science Assignment Help
- Information Systems Assignment Help
- Chemical Engineering Assignment Help
- Civil Engineering Assignment Help
- Electrical, Electronics Help
- Mechanical Engineering Assignment Help
- Petroleum Engineering Assignment Help
- Biochemical and Biotechnology Help

Do My Assignment Help

- Accounting Assignment Help
- Finance Assignment Help
- Economics Assignment Help
- Marketing Assignment Help
- Human Resources Assignment Help
- Operations Management Assignment Help
- Strategy and Planning Help
- Project Management Help
- Case Studies Writing Help
- Political science
- Referencing Help
- Assignment Help Websites
- Online Assignment Help
- Do My Assignment
- Do My Homework

Write My Essay Services

- Essay Writing Help
- Business Essay Writing Help
- Assignment Writing Services
- Plagiarism Free Essay Writing
- Essay Editing Service
- Dissertation Writing Services
- Thesis Writing Help
- Custom Writing Help
- Write My Essay
- Write My Paper
- Paper Writing Service
- Academic Writing Help
- College Essay Writing
- Cheap Essay Writing