Questions


Related Questions:


Questions

Asked By :  Stuart
Answers1

Convert 245 and 24 to binary Using the subtraction rule compute

Convert 245 and 24 to binary. Using the subtraction rule, compute 24 - 245 in binary.




Answers :

0

To convert decimal numbers to binary, we repeatedly divide the number by 2 and collect the remainders. Then, we read the remainders in reverse order to get the binary representation.

Let's convert 245 and 24 to binary:

  1. Decimal 245:

    245÷2=122 (remainder 1)122÷2=61 (remainder 0)61÷2=30 (remainder 1)30÷2=15 (remainder 0)15÷2=7 (remainder 1)7÷2=3 (remainder 1)3÷2=1 (remainder 1)1÷2=0 (remainder 1)\begin{align*} 245 \div 2 &= 122 \text{ (remainder 1)} \\ 122 \div 2 &= 61 \text{ (remainder 0)} \\ 61 \div 2 &= 30 \text{ (remainder 1)} \\ 30 \div 2 &= 15 \text{ (remainder 0)} \\ 15 \div 2 &= 7 \text{ (remainder 1)} \\ 7 \div 2 &= 3 \text{ (remainder 1)} \\ 3 \div 2 &= 1 \text{ (remainder 1)} \\ 1 \div 2 &= 0 \text{ (remainder 1)} \end{align*}

    Reading the remainders in reverse order, we get: 24510=111101012245_{10} = 11110101_2.

  2. Decimal 24:

    24÷2=12 (remainder 0)12÷2=6 (remainder 0)6÷2=3 (remainder 0)3÷2=1 (remainder 1)1÷2=0 (remainder 1)\begin{align*} 24 \div 2 &= 12 \text{ (remainder 0)} \\ 12 \div 2 &= 6 \text{ (remainder 0)} \\ 6 \div 2 &= 3 \text{ (remainder 0)} \\ 3 \div 2 &= 1 \text{ (remainder 1)} \\ 1 \div 2 &= 0 \text{ (remainder 1)} \end{align*}

    Reading the remainders in reverse order, we get: 2410=11000224_{10} = 11000_2.

Now, let's compute 2424524 - 245 using the subtraction rule in binary:

Binary 24:11000Binary 245:11110101\begin{align*} \text{Binary 24:} & \quad 11000 \\ \text{Binary 245:} & \quad 11110101 \\ \end{align*}

Since we're subtracting 245 from 24, we need to take the two's complement of 245 and then add it to 24:

  1. Take the one's complement of 245: 0000101000001010.
  2. Add 1 to get the two's complement: 0000101100001011.

Now, we can add 24 and the two's complement of 245:

11000+0000101111001011\begin{align*} & 11000 \\ + & 00001011 \\ \hline & 11001011 \end{align*}

So, 24245=22124 - 245 = -221 in binary.


Answered By

Stuart

Your Answer

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Write your answer, be as detailed as possible...

Reply as a guest

Required but never shown

Try Now AI powered Content Automation