Questions


Related Questions:


Questions

Asked By :  Steve Kennedy
Answers1

2 in question 1 part d rearrange the expression for kwkwkw to

2.
In Question 1 part d, rearrange the expression for KwK_wKw to work out the OH\text{OH}^-OH ion concentration.

a) Calculate the pH of a solution containing 0.100mol dm30.100 \, \text{mol dm}^{-3}0.100mol dm3 ethanoic acid and 0.100mol dm30.100 \, \text{mol dm}^{-3}0.100mol dm3 sodium ethanoate?
(KaK_aKa of CH3COOH=1.74×105mol dm3\text{CH}_3\text{COOH} = 1.74 \times 10^{-5} \, \text{mol dm}^{-3}CH3COOH=1.74×105mol dm3) [3]

b) How many moles of sodium ethanoate must be added to 2.00dm32.00 \, \text{dm}^32.00dm3 of 0.0100mol dm30.0100 \, \text{mol dm}^{-3}0.0100mol dm3 ethanoic acid to produce a buffer solution of pH 5.40? [5]

2 in question 1 part d rearrange the expression for k to work out the oh ion concentration a calculate the ph of a solution containing 0100 mol dm2 ethanoic acid and 0100 mol dm3 sodium ethanoate k of ch3cooh 174 x 107 mol dm3 31 b how many moles of sodium ethanoate must be added to 200 dm of 00100 mol dm3 ethanoic acid to produce a buffer solution of ph 540 5



Answers :

0


a) Calculate the pH of a solution containing 0.100 mol dm⁻³ ethanoic acid and 0.100 mol dm⁻³ sodium ethanoate

We use the Henderson-Hasselbalch equation for buffer solutions:

pH=pKa+log([Salt][Acid])\text{pH} = \text{pKa} + \log\left(\frac{[\text{Salt}]}{[\text{Acid}]}\right)

Step 1: Calculate pKa
The given KaK_a of ethanoic acid is 1.74×105mol dm31.74 \times 10^{-5} \, \text{mol dm}^{-3}.

pKa=log(Ka)=log(1.74×105)4.76\text{pKa} = -\log(K_a) = -\log(1.74 \times 10^{-5}) \approx 4.76

Step 2: Substitute values
The concentrations of the acid and salt are equal ([Acid]=[Salt]=0.100mol dm3[\text{Acid}] = [\text{Salt}] = 0.100 \, \text{mol dm}^{-3}).

pH=4.76+log(0.1000.100)\text{pH} = 4.76 + \log\left(\frac{0.100}{0.100}\right) pH=4.76+log(1)\text{pH} = 4.76 + \log(1) pH=4.76\text{pH} = 4.76

Answer for part a:
The pH of the solution is 4.76.


b) How many moles of sodium ethanoate must be added to 2.00 dm³ of 0.0100 mol dm⁻³ ethanoic acid to produce a buffer solution of pH 5.40?

Step 1: Use the Henderson-Hasselbalch equation
Rearrange the equation to solve for the salt concentration:

pH=pKa+log([Salt][Acid])\text{pH} = \text{pKa} + \log\left(\frac{[\text{Salt}]}{[\text{Acid}]}\right) log([Salt][Acid])=pHpKa\log\left(\frac{[\text{Salt}]}{[\text{Acid}]}\right) = \text{pH} - \text{pKa} [Salt][Acid]=10(pHpKa)\frac{[\text{Salt}]}{[\text{Acid}]} = 10^{(\text{pH} - \text{pKa})}

Substitute the values pH=5.40\text{pH} = 5.40, pKa=4.76\text{pKa} = 4.76, and [Acid]=0.0100mol dm3[\text{Acid}] = 0.0100 \, \text{mol dm}^{-3}:

[Salt]0.0100=10(5.404.76)=100.644.37\frac{[\text{Salt}]}{0.0100} = 10^{(5.40 - 4.76)} = 10^{0.64} \approx 4.37 [Salt]=4.37×0.0100=0.0437mol dm3[\text{Salt}] = 4.37 \times 0.0100 = 0.0437 \, \text{mol dm}^{-3}

Step 2: Calculate moles of sodium ethanoate required
The total volume of the solution is 2.00dm32.00 \, \text{dm}^3. The moles of sodium ethanoate are:

Moles of Salt=[Salt]×Volume=0.0437mol dm3×2.00dm3\text{Moles of Salt} = [\text{Salt}] \times \text{Volume} = 0.0437 \, \text{mol dm}^{-3} \times 2.00 \, \text{dm}^3 Moles of Salt=0.0874mol\text{Moles of Salt} = 0.0874 \, \text{mol}

Answer for part b:
The amount of sodium ethanoate required is 0.0874 moles.



Answered By

Abel Varughese

Your Answer



XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Write your answer, be as detailed as possible...

Reply as a guest

Required but never shown

Try Now AI powered Content Automation