Using newtons law force balance

Cable Tension Problem
| I = 50ˆi + 30ˆk | G = 50ˆi + 20ˆj + 30ˆk | ||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| A = 30ˆk | G | ||||||||||||||
| K = 20ˆj + 30ˆk | |||||||||||||||
|
A | T3 |
|
D | 9g | I | T5 | ||||||||
| E | R | ||||||||||||||
| L = 25ˆi + 10ˆj | T1 | C | T2 |
|
|||||||||||
| Z | |||||||||||||||
| O |
|
||||||||||||||
| B | J | ||||||||||||||
AC|=√(−15)2+(−30)2 (−15ˆi−30ˆk), KE = ˆ Now, using Newton’s law of force balance, we have as follows. � F = 0 ⇒ 9gˆi + T1
ˆ |
|||||||||||||||
� MK = 0 ⇒ � −→r × −→simplification gives as follows. F = 0 ⇒ −−→KA × T1ˆ AB +−−→KA × T2ˆ AC +−→KI × T6ˆ IJ +−−→KG × T5ˆ GH +−−→KD × 9gˆi +−−→KL × Rˆk = 0 which on
15.3644T1 + 17.8885T2 + 15.3644T6 − 10R = 0


