Language:EN
Pages: 11
Rating : ⭐⭐⭐⭐⭐
Price: $10.99
Page 1 Preview
the stress block must extend below the flange

The stress block must extend below the flange

CE2003 Structural Mechanics / Structural Concrete Design 55

2.5

T-section

L-section

Section at span

Section at support Section at span

Actual
N.A.

Fig. 2.5-3 Stress blocks of T-beams. (a) Actual stress block; (b) equivalent stress block

2.5.2Section with the depth of stress block lying within the flange( s fh )

CE2003 Structural Mechanics / Structural Concrete Design 57

hf bf x 0.567fck
neutral axis

s = 0.8x

Fcc
As

Fst

z
Stress block
Section
A s

M

where

.0 87 f z yk

(2.10)
z d[ 5.0
.0 25
(2.9)
and KM

2.5.3Analysis of a flanged section with the depth of stress block lying

within the flange(

s fh
f st .0 87 f
.0567 f b s .0 87 f
sx z d s
From ckf yk s or 2

CE2003 Structural Mechanics / Structural Concrete Design 58

bf = 800 x 0.567fck s/2
hf= 150 mm

s = 0.8x

Fcc

d=420 mm

z
As =1470 mm2
Stress block
Section

For equilibrium: Fcc = Fst
therefore

.0567 f b s ckf .0 87 f yk

A s

s .0 87
so .0 567 25
x 56 mm fh
s / 8.0

70mm

CE2003 Structural Mechanics / Structural Concrete Design 59

x .0 617d .0 617 420 259
z

Taking moments about the centroid of As, the moment of resistance is

M F cc

z

56 392 10
.0 567 f b sz ck f
.0 567 25 800

check the depth of the stress block extends below the flange. An alternative

'
procedure is to calculate the moment of resistance, M , of the section with f
sfh , the depth of flange (see Fig. 2.5-4). Hence if the design moment, M , d

(b)designing for the conservative condition of

x.0 45d , which is the

maximum value of x for a singly reinforced section and concrete class ≤

A Tsection (or Lsection) can be divided into flange component and web

component, as shown in Fig. 2.5-5.

hf bf = bf + bf s/2=0.4x
As Asf Asw
z=d-0.4x

bw

Actual section Flange component

moment M-Mf

Fig. 2.5-5 Flange and web components of a T-section

M f .0 567 f (b ck f
5.0 h ) f (2.29)
M

f

sf .0 87 f ( d yk 5.0 h ) f (2.30)

oMoment of resistance of the web component

M w M M
(2.31)
A sw M
M M
.0 87 f z yk

.0 87 f z yk

(2.32)
where z
d[ 5.0

.0 25 K w
61
K M M
w b w d f

ck

oTotal reinforcement area

A s A sf A sw (2.33)
hf= 100 mm
0.567fck
s = 0.8x
As

N.A.

Fst

M ' .0 567
f ( d h f
s fh .
f

 0.567

25 400 100(350 - 100/2) 10

6

 170 kNm 180 kNm, the design moment
M f .0 567 f ck ( b f b w ) h f ( d 5.0 h f

CE2003 Structural Mechanics / Structural Concrete Design 62

.0 56725 (400200) 100(3505.0100)

A M
sf .0 87 f ( d yk

651 mm2

85 10 6
.0 87 500(350 5.0 100 )

oFactor for the moment of resistance of the web component:

K M M
.0 155
w b w d f ck
( 180 85 ) 10 6
z 200 350 2 25
d[ 5.0
K w
350 [ 5.0 .0 25

.0 155 / .1 134 ]

293 mm

A M M f (180 85 ) 10 6 745 mm
sw .0 87 f z yk .0 87 500 293
A s A sf A sw 651 745 1396 mm

Provide 3T25 (As = 1472 mm2).

(2) Design by the code method (EC 2)

63
bf 0.567fck

x = 0.45d s = 0.8x

F c1
s
8.0

.0 45d

= 0.2fckbwd

F c2 .0 567 f ( b ck f b )h w
M F st ( d 5.0 h f ) F c 1 ( / 2 5.0 h f

)

h ) f

yks A ( d
.087 f 5.0 h ) f 1.0
A M 1.0
h ) f
s
5.0 h ) f (2.34)

Eq. (2.34) is only applicable when hf< 0.36d.

CE2003 Structural Mechanics / Structural Concrete Design

64
x .0 45d
oWith 2
M
F z c1 1 F z c2
.0167 f b d ckw 2 .0 567 f (b ck f

5.0 h ) f

(2.35)

Note: when using equation 2.34 to calculate the area of tension steel As, it is

necessary to confirm that the design ultimate moment should be Mbal in
M ' .0 567
f ( d h f

/ 2)

s fh .
f

Since

25 400 100(350 - 100/2) 10
 170 kNm 180 kNm, the design moment
A M f1.0 ck b d( .0 36d w

h ) f

s .0 87f yk (d

5.0 h ) f

350 100) 1414mm
180 10 6 1.0 25 200 350 ( .0 36
.0 87 500 (350 5.0 100)

2.5.5Flanged section with compression reinforcement

When the design ultimate moment

M CE2003 Structural Mechanics / Structural Concrete Design
65
M bal
2 .0 567 f (b ck f

compression steel is required.

The moment (M – Mbal) will be resisted by compression steel. Hence,

M M bal .0 87 f yk A ( d s
(2.36)
A M M bal
s .0 87 f ( d yk d )
F st F c1 F c2

F sc

0.87fykAs = compression of flange component + compression of web component + compression of steel A’s

.0567 f (b ck b )h w f
8.0 .0 45d ) .0 87 f yk
A s
b )h w f

.0 204 f b d ck w

A s

.0 87 f
Again, d'x .0 38 or d'd .0 171 , otherwise the compression steel
.087 fyk

You are viewing 1/3rd of the document.Purchase the document to get full access instantly

Immediately available after payment
Both online and downloadable
No strings attached
How It Works
Login account
Login Your Account
Place in cart
Add to Cart
send in the money
Make payment
Document download
Download File
img

Uploaded by : Julie Burgess

PageId: DOCD53879F