The fourier transform ofsolution the fourier transform eisx dxb eisx dxb eisx eisbeisa example
UUNNIITT IIII
F(s) = |
|
---|
www.BrainKart.com
f (x) = |
---|
5.Fourier Cosine Transform:
f (x) = |
|
---|
EXAMPLES:
f (x) | x ≤a | f (x) |
|
|
||||
---|---|---|---|---|---|---|---|---|
x >a | −∞<x <−a |
www.BrainKart.com
f (x) defined by | ||
---|---|---|
|
||
0, x >b |
---|
www.BrainKart.com
∫ f (x) eisx dx
−∞
1 ei(k +s)x b
=2πi(k +s) a
=1 2πi(k +s) 1 (ei(k +s)b−ei(k +s)a ).EXAMPLE:
= |
|
cos sx dx | ||||
---|---|---|---|---|---|---|
= |
|
|
||||
= | 2 |
|||||
= |
Find the Fourier transform of the function f (x) defined by
F(s) = |
|
||
---|---|---|---|
|
)(cos sx +i sinsx )dx
www.BrainKart.com
= | 0 |
|
---|
MA2211 – TRANSFORMS AND PDE
|
π | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
|||||||||||||
4 | if | x ≤a | |||||||||||
Put |
|
||||||||||||
|
π1 4 f 2 | ||||||||||||
|
|||||||||||||
|
|||||||||||||
|
f (x) if | f (x) | if | x >a | |||||||||
|
|||||||||||||
|
|||||||||||||
F(s) = |
2.8 UNIT II
|
|||
---|---|---|---|
= |
0 |
||
By Fourier inverse transform,
f (x ) = | sa) | ||||||
---|---|---|---|---|---|---|---|
2( | |||||||
f (x) = |
|
|
FOURIER TRANSFORM 2.9
Putx =0 we get,
|
ds =πf (0) 4 |
---|
=π(a)
4
|
|
|||
---|---|---|---|---|
a | ||||
∞sin t 2 |
π |
|||
∫t 0 | ||||
|
If a transformation of a function called self reciprocal.
MA2211 – TRANSFORMS AND PDE
=1 |
−s | ||||
---|---|---|---|---|---|
− s2 e 2 ∞ |
|
||||
= |
Fc (s) = |
|
||
---|---|---|---|
= |
|
||
= |
|
||
= |
Fc (s) = |
|
|||||||||
---|---|---|---|---|---|---|---|---|---|---|
= | 2 | ∞ −ax | ||||||||
= | 2 | e−ax | | ∞ | ||||||
a2+s2(−acossx+ssinsx) |
||||||||||
|
cosbx dx = |
|
||||||||
= | 2 | (0) − | 1 |
|
||||||
a2 +s2 | ||||||||||
2 | a |
|
||||||||
π a2 +s2 |
EXAMPLE:
SOLUTION:
Fc (s) = | = |
|
|||
---|---|---|---|---|---|
= | 2 | ||||
π |
|
|
|||
= | |||||
= |
|
||||
−x 2 | +isx |
|
|||
---|---|---|---|---|---|
2 | |||||
|
−1(x2−2isx) 2 | ||||
−1(x2−2isx+(is)2−(is)2) 2 |
2.14 UNIT II
|
|
dt = πe−x . 2 |
---|
FOURIER TRANSFORM 2.15
= | 2 | | ∞ | ||||
---|---|---|---|---|---|---|---|
π | |||||||
∵ ∫e |
cosbx dx = | ||||||
By inverse Fourier cosine transform,
∞
2 2 1
π 0∫1 +s2 cossx ds
∞
2
EXAMPLE:
f (x) | |||
---|---|---|---|
SOLUTION:
www.BrainKart.com
= |
|
||||||
---|---|---|---|---|---|---|---|
|
− | ||||||
s +1 | | ||||||
= | |||||||
|
|||||||
| | ||||||
Find the Fourier sine transform of
= |
|
|
---|---|---|
= |
MA2211 – TRANSFORMS AND PDE
www.BrainKart.com
d | 2 |
|
|
---|---|---|---|
ds Fs (s) = | |||
π |
|
|
(2) | ||
---|---|---|---|---|
Put s =0 |
|
|||
|
||||
Put s =0 | ||||
EXAMPLE:
the | Fourier | sine | transform | of | e−ax , a >0 . | Hence | deduce | |||
---|---|---|---|---|---|---|---|---|---|---|
s | π −ax | |||||||||
SOLUTION:
Inverse Fourier sine transform,
f (x) = | 2 |
|
||||||
---|---|---|---|---|---|---|---|---|
π | ||||||||
= | 2 | 2 | s | |||||
π | s2 +a2 | |||||||
= |
|
s |
|
|||||
s2 +a2 | ||||||||
sin sx ds = | 2 |
MA2211 – TRANSFORMS AND PDE
www.BrainKart.com
If F(s) is the Fourier transform of f (x), then
∞ ∞
EXAMPLE:
F(s) = | −∞ |
|
||
---|---|---|---|---|
= | 2π∫ − a |
|||
2π −a ∫sin sx dx |
||||
= |
|
2.20 UNIT II
By inverse Fourier transform,
|
f (x ) = | |||||||
---|---|---|---|---|---|---|---|---|
= |
|
|
||||||
−∞ | ||||||||
−∞ |
||||||||
|
||||||||
|
||||||||
|
||||||||