Language:EN
Pages: 46
Rating : ⭐⭐⭐⭐⭐
Price: $10.99
Page 1 Preview
the fourier transform ofsolution the fourier trans

The fourier transform ofsolution the fourier transform eisx dxb eisx dxb eisx eisbeisa example

UUNNIITT IIII

F(s) = 

2π 
1 ∞ 

∫ f (x) eisx dx

www.BrainKart.com

f (x) =

5.Fourier Cosine Transform:

f (x) =

0

EXAMPLES:

  f (x)
xa
f (x)

axa

& a <x <∞ 

x >a −∞<x <−a

www.BrainKart.com

f (x) defined by  

 
0, x <a
f (x) = 1,  a <x <b .

0,x>b

0, x >b  

www.BrainKart.com

∫ f (x) eisx dx

−∞ 

1 ei(k +s)xb
=2πi(k +s)    a
=1 2πi(k +s) 1 (ei(k +s)bei(k +s)a ).

EXAMPLE:

 

=

a 2

  cos sx dx
=

2
π 

  sin sx   −cos sx a

=

2   

 

=

Find the Fourier transform of the function f (x) defined by

F(s) = 

−∞ 

1
=1 ∫ (1−x2

)(cos sx +i sinsx )dx

www.BrainKart.com

=

0

cos sx dx +0

 
 
MA2211 – TRANSFORMS AND PDE

 

∞sin ss coss
∫ 0    s 3 cos sx ds =   

π 

f (x)

  4
if xa
Put

we get,

∞sin ss coss   s  

π1  4 f 2  
 
 

π 1 2  

=4 1 −2    

 
 
 

∞sin ss coss  s   3π 

∫

 
 
 
 
 

Find the Fourier transform of

f (x) if f (x) if x >a

∞sin t 2 π 

 
 

−∞ 

F(s) = 

 

2.8 UNIT II

a
=1

=

2 2 ∫(ax

0

 
By Fourier inverse transform,

  f (x ) = 
sa) 
2(
 
f (x) =


12π ∫  −∞

2 

 

FOURIER TRANSFORM 2.9

Putx =0 we get,

  

dsf (0)
4

=π(a)
4

 
 

 

2
∞sint 2  

a  

∞sin t 2

π 
4 (a)

 
∫t 0

(SELF RECIPROCAL)

If a transformation of a function called self reciprocal.

 

MA2211 – TRANSFORMS AND PDE

∞  −1 (xis )2

=1

s
− s2 e 2 ∞ 

−1 (xis )2

 

=
  Fc (s) =

∞ 
f (x) cos sx dx
0

=

a
2

=

0a 1   
2

π ∫cos (s +1)x +cos (s −1)xdx

=

 

Fc (s) =

2
π 

= 2 ∞  −ax
= 2 eax

 

a2+s2(−acossx+ssinsx) 

cosbx dx =

eax  

2 (0) −  1

(−a(1) +0) 
  

 

a2 +s2
2 a

.

π a2 +s2

EXAMPLE:

SOLUTION:

Fc (s) = =

∞ 
2

π ∫f (x) cos sx dx 0

= 2
π 

s

  0

=
=

π  s   

 

x 2 +isx

dx

2

∞ =1 Real part of ∫e 2π  −∞ 

−1(x2−2isx) 2
−1(x2−2isx+(is)2−(is)2) 2

2.14 UNIT II

Find the Fourier cosine transform of ex

∞cos xt and deduce that ∫1 +t 0 2

dt = πex . 2

FOURIER TRANSFORM 2.15

 

= 2
π 

ax

∵ ∫e

cosbx dx =

 

By inverse Fourier cosine transform,

∞ 

2 2 1

π  0∫1 +s2 cossx ds

2

EXAMPLE:

f (x)

SOLUTION:

www.BrainKart.com

 

=

a
2

 

1 sin(s −1)x

=2π s −1

− 
s +1   
=

=1 2π sin(s −1)a −sin(s +1)a . 

   
 

Find the Fourier sine transform of

 

=

2−coss +sin s −sin 2s +coss +sin s  

=

MA2211 – TRANSFORMS AND PDE

www.BrainKart.com

 

d 2

∫∂e 0 sx

 

ds Fs (s) =
π 
 

Fs (s) = 
=

2 1

(2)
Put s =0

in (1) we get,

Fs (0) =0

 
 
Put s =0

 
EXAMPLE:

 
the Fourier sine transform of eax , a >0 . Hence deduce
s π   −ax

SOLUTION:

Inverse Fourier sine transform,

f (x) = 2

∞ 

π 
= 2
2 s
π  s2 +a2

2 ∞
π0 ∫   

s

 sin sx ds

s2 +a2
sin sx ds 2

MA2211 – TRANSFORMS AND PDE
www.BrainKart.com

If F(s) is the Fourier transform of f (x), then

∞ ∞ 

EXAMPLE:

F(s) = 

−∞ 

f (x) eisx dx

=

2π∫ 

− a

2π −a ∫sin sx dx

=

1 a

2.20 UNIT II

By inverse Fourier transform,

 

f (x ) = 
=

∞2π∫ 

2 sinsa    −isx

 
 
−∞ 

s (cossxi sin sx )ds  

−∞ 

 
 

i ∞sin sa  π∫   s
−∞ 

 
 

1∞sin sa  
=π2 ∫0  s cossx ds −0

 
 
 

0  s
cossx ds

 

 
 

You are viewing 1/3rd of the document.Purchase the document to get full access instantly

Immediately available after payment
Both online and downloadable
No strings attached
How It Works
Login account
Login Your Account
Place in cart
Add to Cart
send in the money
Make payment
Document download
Download File
img

Uploaded by : Mitchell Welch

PageId: DOC6497D15