Language:EN
Pages: 1
Words: 83
Rating : ⭐⭐⭐⭐⭐
Price: $10.99
Page 1 Preview
the finite element method linear static and dynami

The finite element method linear static and dynamic finite element analysis

The global stiffness matrix Assignment

  34 Download     📄   7 Pages / 1600 Words

Question 1

  • Part a: The global stiffness matrix
  • Part b: Displacements of Nodes 2 and 3
  • Part c: The reaction force at nodes 1 and 4
  • Part d: The force in the spring 2

K_2=200;

K_3=100;

Number of nodes is 4 and number of elements is 3 Global stifffness matrix, [K] is given by: [K]=[K_1]+[K_2]+[K_3] where [K_1] the local stiffness matrix of element 1 [K_2] the local stiffness matrix of element 2 and [K_3] the local stiffness matrix of element 3

K_1m=[100 -100; -100 100]; %local stiffness matrix of element 1

%updating the elements of the global stiffness matrix using the local

%stiffness matrices

K =

100.0000e+000 -100.0000e+000 0.0000e+000 0.0000e+000

From equilibrium equation [K][d]=[F] where [d] is the displacement vector [F] the force vector

%We know that:

eqn1=K(2,2)*u_2+K(2,3)*u_3==500;

eqn2=K(3,2)*u_2+K(3,3)*u_3==0;

3

d3 =

u_1=0; u_2=2; u_3=3;u_4=0;

d=[u_1; u_2; u_3; u_4]; %displacement vector

R_1 =

-200.0000e+000

F_2=K_2*(d3-d2)

F_2 =

Part a

E=30*10^6; %psi

% we know that at x=0, u(x)=0, which gives

% a_0=0;

% and u(x)=-6*a_2*x+a_2*x^2;

% u(x)=a_2*(x^2-6x)

T_2(x)=300*x/x; %T(x)=300 lb/in

P_e=0.5*(int(((E*A)*(diff(u,x))^2),x,0,60)-int((T_1(x)*u*A), x, 0,30)-int((T_2(x)*u*4*A), x, 30,60));

a_2=solve(diff(P_e,a_2)==0,a_2) %solving for a_2

%using a_2 in u(x) expression

u_2 =

(499*x^2)/109760000 - (1497*x)/54880000

%plot of u versus x

figure (1)

title('plot of u versus x')

%plot of sigma_xx versus x

ylabel('\sigma')

title('plot of \sigma versus x')

%Elongation is given

% Elong=PL/AE

L3=0.2;A3=400*10^-6; P3=600*10^3;

L4=0.2;A4=400*10^-6; P4=0;

% Hence there is a compression force at ends less than the deformation of

% the bars

%Reaction at unfixed end P5

P5=vpa(soln, 5)

u1=vpa(((P1-P5)*L1)/(A1*E),3)%node 1

u2=vpa(((P2-P5)*L2)/(A2*E),3) %node 2

0.00202

u2 =

-5.68e-4

u5 =

S3=vpa((P3-P5)/A3, 5) %Element 3

S4=vpa((P4-P5)/A4, 5) %Element 4

S3 =

9.3182e+8

P_start=vpa((600+300)*10^3-P5, 5)

P_end =

  • Obtaining the element stiffness matrices
  • Obtaining the global stiffness matrix
  • Obtaining the nodal displacements and Support reactions from the Force displacement equation
  • Element stresses

clc;

clear;

%same material, the stiffness matrices are equal:

E=200*10^9; %N/m^2

K1=((A1*E)/L1).*M %element 1 stiffness matrix

K2=((A2*E)/L2).*M %element 2 stiffness matrix

-333.3333e+009 333.3333e+009

K2 =

-400.0000e+009 400.0000e+009

K4 =

%updating the elements of the global stiffness matrix using the local

%stiffness matrices

disp("The Global stiffness matrix is")

disp(K)

0.0000e+000 -333.3333e+009 733.3333e+009 -400.0000e+009

0.0000e+000 0.0000e+000 -400.0000e+009 800.0000e+009

0.0000e+000

-400.0000e+009

u=[0 u2 u3 u4 3.5*10^-3]';

F=[F1 900*10^3 600*10^3 600*10^3 F5]';

u3=vpa(soln.u3, 3) %m

u4=vpa(soln.u4, 3) %m

9.58e-4

u3 =

-3.1925e+8

F5 =

FS=[F1 F2 F3 F4]';

Stress=[s1 s2 s3 s4]';

s3=vpa(sol.s3, 5) %Pa

s4=vpa(sol.s4, 5) %Pa

s3 =

1500.0

Felton, Lewis P, and Richard B Nelson. Matrix Structural Analysis. New York, J. Wiley, 2018.

Hughes, Thomas J R. The Finite Element Method : Linear Static and Dynamic Finite Element Analysis. New York, Dover Publication, Inc, 2017.

Resources

  • 24 x 7 Availability.
  • Trained and Certified Experts.
  • Deadline Guaranteed.
  • Plagiarism Free.
  • Privacy Guaranteed.
  • Free download.
  • Online help for all project.
  • Homework Help Services

You are viewing 1/3rd of the document.Purchase the document to get full access instantly

Immediately available after payment
Both online and downloadable
No strings attached
How It Works
Login account
Login Your Account
Place in cart
Add to Cart
send in the money
Make payment
Document download
Download File
img

Uploaded by : Michael Kennedy-Fisher

PageId: DOCAF33591