The continuous time fourier transform scilab codes
Scilab Code for
Signals and Systems
by Alan V. Oppenheim, Alan V. Willsky, S.Hamid Nawab1Created by
Prof. R. Senthilkumar
Institute of Road and Transport Technology rsenthil signalprocess@in.com
Author: Alan V. Oppenheim, Alan V. Willsky, S.Hamid Nawab Title: Signals and Systems
Publisher: Prentice-Hall India
Edition: Second
Year: 1992
Place: New Delhi
ISBN: 978-81-203-1246-3
1
2 Linear Time Invariant Systems 26
2.1 Scilab Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5 The Discreet Time Fourier Transform 117
5.1 Scilab Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
7.1 Scilab Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
9 The Laplace Transform 155
11 Linear Feedback Systems 181
11.1 Scilab Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
1.3 Example1.3.sce . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4 Example1.4.sce . . . . . . . . . . . . . . . . . . . . . . . . 14
1.13b Example1.13b.sce . . . . . . . . . . . . . . . . . . . . . . . 18
1.14 Example1.14.sce . . . . . . . . . . . . . . . . . . . . . . . . 18
1.20 Example1.20.sce . . . . . . . . . . . . . . . . . . . . . . . . 24
2.1 Example2.1.sce . . . . . . . . . . . . . . . . . . . . . . . . 26
2.7 Example2.7.sce . . . . . . . . . . . . . . . . . . . . . . . . 45
2.8 Example2.8.sce . . . . . . . . . . . . . . . . . . . . . . . . 49
3.6 Example3.6.sce . . . . . . . . . . . . . . . . . . . . . . . . 66
3.7 Example3.7.sce . . . . . . . . . . . . . . . . . . . . . . . . 68
3.8 | Example3.8.sce | . . . . . . . . . . . . . . . . . . . . . . . . | 71 |
---|---|---|---|
3.10 | Example3.10.sce . . . . . . . . . . . . . . . . . . . . . . . . | 74 | |
3.11 | Example3.11.sce . . . . . . . . . . . . . . . . . . . . . . . . | 76 | |
3.12 | Example3.12.sce . . . . . . . . . . . . . . . . . . . . . . . . | 80 | |
3.13 | Example3.13.sce . . . . . . . . . . . . . . . . . . . . . . . . | 82 | |
3.14 | Example3.14.sce . . . . . . . . . . . . . . . . . . . . . . . . | 85 | |
3.15 | Example3.15.sce . . . . . . . . . . . . . . . . . . . . . . . . | 87 | |
4.1 | Example4.1.sce | . . . . . . . . . . . . . . . . . . . . . . . . | 90 |
4.2 | Example4.2.sce | . . . . . . . . . . . . . . . . . . . . . . . . | 93 |
4.4 | Example4.4.sce | . . . . . . . . . . . . . . . . . . . . . . . . | 95 |
4.5 | Example4.5.sce | . . . . . . . . . . . . . . . . . . . . . . . . | 97 |
4.6 | Example4.6.sce | . . . . . . . . . . . . . . . . . . . . . . . . | 99 |
4.7 | Example4.7.sce | . . . . . . . . . . . . . . . . . . . . . . . . | |
4.8 | Example4.8.sce | . . . . . . . . . . . . . . . . . . . . . . . . | |
4.9 | Example4.9.sce | . . . . . . . . . . . . . . . . . . . . . . . . | |
4.12 | Example4.12.sce . . . . . . . . . . . . . . . . . . . . . . . . |
|
|
4.18 | Example4.18.sce . . . . . . . . . . . . . . . . . . . . . . . . |
|
|
4.23 | Example4.23.sce . . . . . . . . . . . . . . . . . . . . . . . . | ||
4.22 | Impulse response of LTI system . . . . . . . . . . . . . . . | ||
5.1 | Example5.1.sce | . . . . . . . . . . . . . . . . . . . . . . . . | |
5.2 | Example5.2.sce | . . . . . . . . . . . . . . . . . . . . . . . . | |
5.3 | Example5.3.sce | . . . . . . . . . . . . . . . . . . . . . . . . |
|
5.5 | Example5.5.sce | . . . . . . . . . . . . . . . . . . . . . . . . |
|
5.6 | Example5.6.sce | . . . . . . . . . . . . . . . . . . . . . . . . | |
5.7 | Example5.7.sce | . . . . . . . . . . . . . . . . . . . . . . . . | |
5.9 | Example5.9.sce | . . . . . . . . . . . . . . . . . . . . . . . . | |
5.12 | Example5.12.sce . . . . . . . . . . . . . . . . . . . . . . . . | ||
5.15 | Example5.15.sce . . . . . . . . . . . . . . . . . . . . . . . . |
|
|
6.1 | Example6.1.sce | . . . . . . . . . . . . . . . . . . . . . . . . |
|
6.3 | Example6.3.sce | . . . . . . . . . . . . . . . . . . . . . . . . | |
6.4 | Example6.4.sce | . . . . . . . . . . . . . . . . . . . . . . . . | |
6.5 | Example6.5.sce | . . . . . . . . . . . . . . . . . . . . . . . . | |
7.1 | Example7.1.sce | . . . . . . . . . . . . . . . . . . . . . . . . | |
7.2 | Example7.2.sce | . . . . . . . . . . . . . . . . . . . . . . . . |
|
7.3 | Example7.3.sce | . . . . . . . . . . . . . . . . . . . . . . . . |
|
7.4 | Example7.4.sce | . . . . . . . . . . . . . . . . . . . . . . . . | |
7.5 | Example7.5.sce | . . . . . . . . . . . . . . . . . . . . . . . . | |
9.1 | Example9.1.sce | . . . . . . . . . . . . . . . . . . . . . . . . |
9.2 Example9.2.sce . . . . . . . . . . . . . . . . . . . . . . . . 155
9.3 Example9.3.sce . . . . . . . . . . . . . . . . . . . . . . . . 155
9.8 Example9.8.sce . . . . . . . . . . . . . . . . . . . . . . . . 157
9.9 Example9.9.sce . . . . . . . . . . . . . . . . . . . . . . . . 158
9.14 Example9.14.sce . . . . . . . . . . . . . . . . . . . . . . . . 163
9.15 Example9.15.sce . . . . . . . . . . . . . . . . . . . . . . . . 164
9.20 Example9.20.sce . . . . . . . . . . . . . . . . . . . . . . . . 166
9.21 Example9.21.sce . . . . . . . . . . . . . . . . . . . . . . . . 166
9.35 Example9.35.sce . . . . . . . . . . . . . . . . . . . . . . . . 168
9.36 Example9.36.sce . . . . . . . . . . . . . . . . . . . . . . . . 169
10.3 Example10.3.sce . . . . . . . . . . . . . . . . . . . . . . . . 172
10.4 Example10.4.sce . . . . . . . . . . . . . . . . . . . . . . . . 172
10.10 Example10.10.sce . . . . . . . . . . . . . . . . . . . . . . . 174
10.11 Example10.11.sce . . . . . . . . . . . . . . . . . . . . . . . 175
10.19 Example10.19.sce . . . . . . . . . . . . . . . . . . . . . . . 176
10.23 Example10.23.sce . . . . . . . . . . . . . . . . . . . . . . . 177
10.37 Example10.37.sce . . . . . . . . . . . . . . . . . . . . . . . 180
11.1 Example11.1.sce . . . . . . . . . . . . . . . . . . . . . . . . 181
11.6 Example11.6.sce . . . . . . . . . . . . . . . . . . . . . . . . 187
11.7 Example11.7.sce . . . . . . . . . . . . . . . . . . . . . . . . 188
List of Figures
1.1 Results of Exa 1.5 . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Results of Exa 2.3 . . . . . . . . . . . . . . . . . . . . . . . . 31
2.5 Results of Exa 2.3 . . . . . . . . . . . . . . . . . . . . . . . . 32
2.10 Results of Exa 2.5 . . . . . . . . . . . . . . . . . . . . . . . . 39
2.11 Results of Exa 2.5 . . . . . . . . . . . . . . . . . . . . . . . . 40
2.16 Results of Exa 2.7 . . . . . . . . . . . . . . . . . . . . . . . . 47
2.17 Results of Exa 2.7 . . . . . . . . . . . . . . . . . . . . . . . . 48
3.1 Results of Exa 3.2 . . . . . . . . . . . . . . . . . . . . . . . . 57
3.2 Results of Exa 3.2 . . . . . . . . . . . . . . . . . . . . . . . . 58
3.6 Results of Exa 3.5 . . . . . . . . . . . . . . . . . . . . . . . . 65
3.7 Results of Exa 3.5 . . . . . . . . . . . . . . . . . . . . . . . . 66
3.12 Results of Exa 3.10 . . . . . . . . . . . . . . . . . . . . . . . 76
3.13 Results of Exa 3.11 . . . . . . . . . . . . . . . . . . . . . . . 79
3.18 Results of Exa 3.15 . . . . . . . . . . . . . . . . . . . . . . . 89
4.1 Results of Exa 4.1 . . . . . . . . . . . . . . . . . . . . . . . . 92
4.6 Results of Exa 4.6 . . . . . . . . . . . . . . . . . . . . . . . . 101
4.7 Results of Exa 4.7 . . . . . . . . . . . . . . . . . . . . . . . . 103
4.12 Results of Exa 4.18 . . . . . . . . . . . . . . . . . . . . . . . 112
4.13 Results of Exa 4.23 . . . . . . . . . . . . . . . . . . . . . . . 113
5.3 Results of Exa 5.2 . . . . . . . . . . . . . . . . . . . . . . . . 123
5.4 Results of Exa 5.3 . . . . . . . . . . . . . . . . . . . . . . . . 125
5.8 Results of Exa 5.9 . . . . . . . . . . . . . . . . . . . . . . . . 133
5.9 Results of Exa 5.12 . . . . . . . . . . . . . . . . . . . . . . . 135
6.4 Results of Exa 6.3 . . . . . . . . . . . . . . . . . . . . . . . . 145
6.5 Results of Exa 6.4 . . . . . . . . . . . . . . . . . . . . . . . . 146
9.2 Results of Exa 9.13 . . . . . . . . . . . . . . . . . . . . . . . 161
9.3 Results of Exa 9.13 . . . . . . . . . . . . . . . . . . . . . . . 162
11.4 Results of Exa 11.5Bode . . . . . . . . . . . . . . . . . . . . 185
11.5 Results of Exa 11.5Nyquist . . . . . . . . . . . . . . . . . . . 186
11.10Results of Exa 11.9 . . . . . . . . . . . . . . . . . . . . . . . 193
10
1 // Example 1 . 1 : Time S h i f t i n g
2 //SIGNALS & SYSTEMS, Second Edition
7 clc;
8 close;
13 for i = length(t)+1:2* length(t)
14 x(i) = 1-t(i-length(t));
19 // t4 = 0:1/ length ( t3 ) : 1 ;
20 //Mid =c e i l ( l en gth ( t3 ) /2) ;
2 //SIGNALS & SYSTEMS, Second Edition
3 //V.OPPENHEIM, S .WILLSKY, S .HAMID NAMWAB
8 close;
9 t3 = 0:1/100:4/3;
|
|
||
---|---|---|---|
xtitle( ’ Time | S c a l i n g |
13
Example 1.4 Combinationation two periodic signals Aperiodic signal
1 | // Example | two | p e r i o d i c | |||||||
---|---|---|---|---|---|---|---|---|---|---|
2 | // | Aperiodic |
|
|||||||
3 |
|
|||||||||
4 | ||||||||||
5 | ||||||||||
6 | ||||||||||
7 |
|
|
||||||||
8 | ||||||||||
9 | ||||||||||
10 | ||||||||||
11 | ||||||||||
12 |
|
|||||||||
13 |
|
|||||||||
14 | ||||||||||
15 | ||||||||||
16 | ||||||||||
17 | s i g n a l |
|
f o r | |||||||
f o r |
|
e x p o n e n t i a l s
2 // as a s i n g l e s i n u s o i d
7 x1 = exp(sqrt (-1)*2*t);
8 x2 = exp(sqrt (-1)*3*t);
13 plot(t,X);
14
14 | xtitle( ’ Fu l l | wave | r e c t i f i e d | s i n u s o i d ’ , ’ time |
---|
Example 1.6 Determining the fundamental period of composite discrete
time signal
4 //x [ n ] = exp ( j (2∗ %pi /3) n )+exp ( j (3∗ %pi /4) n ) clear all;
15
5 | 2 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
6 | |||||||||||||||
7 | Omega1 = 2*%pi /3; | frequency | s i g n a l | ||||||||||||
8 | Omega2 = 3*%pi /4; | // Angular | frequency | s i g n a l | |||||||||||
9 | |||||||||||||||
N1 = (2* %pi)/Omega1; | // Peirod | of |
|
|
|||||||||||
10 | N2 = (2* %pi)/Omega2; | // Period | of | ||||||||||||
11 | //To f i n d | of | s i g n a l |
|
|||||||||||
12 |
|
||||||||||||||
13 | |||||||||||||||
14 | |||||||||||||||
15 | |||||||||||||||
16 | |||||||||||||||
17 |
|
||||||||||||||
18 | |||||||||||||||
|
|||||||||||||||
19 | |||||||||||||||
20 | //To f i n d | of | s i g n a l | ||||||||||||
21 |
|
||||||||||||||
22 |
|
||||||||||||||
23 | |||||||||||||||
24 | |||||||||||||||
25 | |||||||||||||||
26 | |||||||||||||||
27 | |||||||||||||||
|
|||||||||||||||
28 |
|
||||||||||||||
29 | |||||||||||||||
30 | |||||||||||||||
31 | //To determine | the | fundamental | ||||||||||||
32 |
Example 1.12 Classification of system:Causality property
2 | i s | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
3 | //To check | whether | the | given | d i s c r e t e | system | |||||
4 | Causal | System |
|
||||||||
|
|||||||||||
5 |
8 | n = -length(x)/2: length(x)/2; | a | c a u s a l | |||||||
---|---|---|---|---|---|---|---|---|---|---|
9 | ||||||||||
10 | ||||||||||
11 |
|
|||||||||
12 |
|
|||||||||
13 | for n = | |||||||||
14 | ||||||||||
15 | ||||||||||
16 | ||||||||||
17 |
|
|||||||||
18 | ||||||||||
|
||||||||||
19 | ||||||||||
20 | ||||||||||
21 | ||||||||||
22 |
|
i s | ||||||||
23 |
|
f u t u r e | ||||||||
24 | disp( ’ Since | i t | depends on | |||||||
25 | i s |
|
system ’ ) | |||||||
26 |
|
13 | input | i s | bounded | output |
|
---|
unbounded ’ )
Example 1.13b Determination of stability of a given system
1 | // Example | 1 . 1 3 ( b ) : Determination |
|
of | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
2 | given | ||||||||||
|
|||||||||||
3 | // given |
|
|||||||||
4 | |||||||||||
5 | |||||||||||
6 | |||||||||||
7 | |||||||||||
8 |
|
||||||||||
9 |
|
// Input | |||||||||
10 | |||||||||||
11 | |||||||||||
12 | |||||||||||
13 |
|
input | i s |
|
output | i s |
Example 1.14 Classification of a system:Time Invariance Property
18
4 // The given v a r i a n t ( or ) Time In−v a r i a n t d i s c r e t e s i g n a l i s y ( t ) = s i n ( x ( t ) )
5 clear;
10 x(t) = (2* %pi/T)*t;
11 y(t) = sin(x(t));
16 if(Input_shift == Output_shift)
17 disp( ’ The given
20 |
|
---|
19