Symmetric and closure for the set and relation example for guidance only
Project Due: Week 14th
Properties Of Relation (Cover Transitive, Reflective and Symmetric)
Determine the properties of relation (reflexive, symmetric, transitive.....). For example the above set and relation will produce:
Output: The set properties is REFLEXIVE, SYMMETRIC, AND TRANSITIVE.
Front page (cover)
Introduction (Background of study and problem statement)
Conclusion
Programming code (All CODE should be documented with comment).
| Criteria 1 | Criteria 2 | Criteria 3 | Criteria 4 | Criteria 5 | Criteria 6 | Criteria 7 | Criteria 8 | Product | Total |
|---|---|---|---|---|---|---|---|---|---|
| ( ________ / 36) x 4 = _________ |


