Solve the quadratic programming problem beales method
499
MA/MSCMT-10
December - Examination 2016
M.A./M.Sc. (Final) Mathematics Examination Mathematical Programming
Paper - MA/MSCMT-10
[ Max. Marks :- 80 | ||
---|---|---|
Section - A 8 × 2 = 16 Very Short Answer Questions
Note: Section ‘A’ contain 08 Very Short Answer Type Questions.Examinees have to attempt all questions. Each question is of 02 marks and maximum word limit may be thirty words.
|
g x j ( ) | $ |
|
( j | = | 1, 2..... |
---|
(1) | (P.T.O.) |
---|
(vi) Write the dual of quadratic programming problem.
max f x ( ) = C X
T
(viii)Explain Bellman’s principle of optimality.
|
Section - B | 4 × 8 = 32 |
---|---|---|
strictly convex.
3) Solve the following L.P.P. with the help of revised simplex
-x 1 + 3x 2# 6
x , 1 x 2$ 0
min z | = | 4 x 1 | + | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
s t . . | 5 x 1 | + | 3 x 2$ | ||||||||
x 1# | |||||||||||
x 2# |
|
||||||||||
x , 1 | x 2$ | 0 |
|
||||||||
(2) | (Contd.) |
min. | z | = | 4 x 1 2 | + | 2 x | 2 | + | x | 2 | - |
|
||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2 | 3 | ||||||||||||||||||
s.t. x 1 | + | x 2 | + | x 3 | = |
|
|||||||||||||
2 x 1 | + | x 2 | + | 2 x 3 | = | 30 | |||||||||||||
x 1 | , | x 2 | , |
min ( ) = x 1 2 + x 2 2 + x 3 2
s.t. 4 x 1 + x 2 2 + 2 x 3 = 14
s.t. AX $b
where A is an mxn real matrix and G is an nxn real positive
x 2# 6
3 x 1 + 2 x 2# 18
min. x 1 2 | + | x | 2 | + | x | 2 | i | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2 | 3 | ||||||||||||
s.t. | x 1 | . | x 2 | . | x 3$ | 5 0 | |||||||
x 1 | , | x 2 | , | ||||||||||
|
|
(P.T.O.) |
Examinees will have to answer any two (02) questions. Each
question is of 16 marks. Examinees have to delimit each
2 x 1 + 20 x 2 + 4 x 3# 15
6 x 1 + 20 x 2 + 4 x 3 = 20
= | 2 x 1 | + | 3 x 2 | - | _ | x 1 2 | + | x | 2 | + | x | 2 | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2 | 3 | |||||||||||||||
s.t. | x 1 | + | x 2# | 1 |
|
|||||||||||
2 x 1 | + | 3 x 2# | ||||||||||||||
|
x 2$ | 0 |
= | x 1 | + | x 2 | - | x 1 2 | + | - | 2x | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
|||||||||||||
s.t. | x , 1 | x 2$ | 0 |
13) Find optimal solution of the convex separate programming
maxz | = | 3 x 1 | + | 16 | |||||
---|---|---|---|---|---|---|---|---|---|
s.t. | 4 x 1 2 | + | x | 2 2 # | |||||
x , 1 | 0 | ||||||||
(4) |