Language:EN
Pages: 3
Words: 880
Rating : ⭐⭐⭐⭐⭐
Price: $10.99
Page 1 Preview
sin cos sin cos cos sin cos sin tan sec tan

Calc 2 Equations

sin^2(x) □ cos^2(x) = □ : + , 1

tan^2(x) □ 1 = □ : + , sec^2(x)

sin(x + y) = : sin(x)cos(y) + sin(y)cos(x)

cos(x - y) = : cos(x)cos(y) + sin(x)sin(y)

sin^2(x) = : (1/2) (1 - cos(2x))

sin(x)cos(y) = : (1/2) (sin(x + y) + sin(x-y))

∫f(x)g'(x) = : f(x)g(x) - ∫f'(x)g(x)dx

∫udv = : uv - ∫vdu

f(x) = x^nf'(x)= : nx^(n-1)

f(x) = x^n∫f(x)dx = : (x^(n+1))/(n+1) +C

f(x) = sin(x)f'(x) = : cos(x)

f(x) = sin(x)∫f(x)dx = : -cos(x) +C

f(x) = csc(x)f'(x) = : -csc(x)cot(x)

f(x) = csc(x)∫f(x)dx = : -ln(|csc(x)+cot(x)|) +C

f(x) = sinh(x)f'(x) = : cosh(x)

f(x) = sinh(x)∫f(x)dx = : cosh(x) +C

If you see a^2 - b^2 * x^2 : Usex = (a/b)sin(x)

If you see a^2 + b^2 * x^2 : Usex = (a/b)tan(x)

∫sec^n * tan(x)^m dxIf neither n is even or m is odd, : Use "ingenuity" ;)

Left Endpoint Approx. = : ΔX[f(X0)+...+f(Xn-1)]

For Approximations, ΔX = : (b-a)/n

Type 1 Improper Integral : ∫ {from a to ∞, -∞ to b, or -∞ to ∞}

Area "Under" a Curve (Polar) : A = (1/2) ∫(r^2)dθ { ∫(f(θ)^2)dθ }

Area "Between" two curves (Polar) : A = (1/2) ∫{(rin^2) - (rout^2)}dθ

Surface Area (Parametric) : SA = 2π ∫(r*L)dx{or dy, depending on how your slicing}

Hydro-static Force. F = : pg ∫L(y)D(y)dy

P Series:(Conditions: ) : If p > 1, then Σ{1/(n^p)} Converges.If p ≤ 1, then Σ{1/(n^p)} Diverges.Conditions: Must be of the form Σ{1/(n^p)}

Comparison Tests:(Conditions: ) : Σan ≥ ΣbnIf an Converges, bn Converges.If bn Diverges, an Diverges.Conditions: Non-Negative

Maclaurin Series for e^x = : Σ[0→∞] (x^n)/(n!)I = (-∞,∞)

Maclaurin Series for sin(x) = : Σ[0→∞] [((-1)^n)*x^(2n+1)]/((2n+1)!)I = (-∞,∞)

Maclaurin Series for (1 + X)^k = : Σ[n=0→∞] ("k choose n") * x^nI = (-1,1)

("k choose n") = : [k(k-1)(k-2)(k-3)...(k-n+1)]/(n!)

You are viewing 1/3rd of the document.Purchase the document to get full access instantly

Immediately available after payment
Both online and downloadable
No strings attached
How It Works
Login account
Login Your Account
Place in cart
Add to Cart
send in the money
Make payment
Document download
Download File
img

Uploaded by : Glen Clarke-Jones

PageId: DOC6992A3D