Rnr rnc for the voltage-divider circuit figure with
78 | C H A P T E R |
|
|
---|
in = in−1, | (2.62) |
---|
v0 + v1 + · · · vN = 0. (2.63)
Finally, Equations 2.60 through 2.63 can be solved to yield
i | 1 | V, | (2.64) | |
---|---|---|---|---|
n = | R1 + R2 + · · · RN | |||
V, | (2.65) | |||
(2.66) |
This completes the analysis.
As was the case for the two-resistor voltage divider, the preceding analysis shows that series resistors divide voltage in proportion to their resistances. This follows from the Rn in the numerator of the right-hand side of Equation 2.66.
RS =V | (2.67) |
---|
FIGURE 2.34 The equivalence |
|
|||
---|---|---|---|---|
of series resistors. | . . . | |||
2.3 Circuit Analysis: Basic Method |
|
|
79 | ||
---|---|---|---|---|---|
v o l t a g e - d i v i d e r c i r c u i t | Determine v1 and | ||||
2. Write the constituent relations
|
---|
i1 − i2 = 0. | (2.71) | |
---|---|---|
(2.72) |
Now eliminate i1 and i2 from Equations 2.69, 2.70, and 2.71, to obtain
v1 =v2 |
|
(2.73) |
---|
+ | −3 V +v2 2 | + |
|
10 Ω |
|
+ | i2 | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
i1 | |||||||||||
R1 | + | v1 | |||||||||
- | |||||||||||
v(t) | R2 | + | v2 | 20 Ω | |||||||
generator |
|
- | - | ||||||||
- |
-