Observations for those embarking on a profession in civil engineering
EGB123 Civil Engineering Systems
Answer:
Background
Structural engineering investigation is an important concept in the development of structures within the industry. The process of investigating structural components can be only executed by trained structural engineers of different capacities assigning different roles to each other so as to achieve optimum results. Structural engineering investigation can be defined as the utilization of the various engineering sciences to the examination of performance problem or failure issues and is highly particular field engineering as far as designing practice is concerned. It requires designing mastery and learning of lawful systems. From an engineering point of view, structural engineering investigation manages the examination and recreation of disappointments. From a lawful point of view, criminological building is a reality discovering mission to take in the most reasonable justification or reasons for a disappointment ("Kurilpa Bridge", 2018).
The structure under investigation in this particular case was the Kurilpa Bridge. It is one of the first tensegrity cycle and pedestrian bridge in the World. Using cables arranged in an artistic array in combination with steel bars that were flying in nature, the elegant corridor gives the quality and firmness required for the 425 meter long scaffold to traverse the beautiful Brisbane River. The bridge extension interfaces the Precinct new Millennium Arts to the city centre area including the Gallery of Modern Art (GoMA) and the State Library. The bridge gives labourers from the fast growing West and South End Brisbane regions with a shielded and comfortable drive to the city centre region; and contributes modest entrance to occupants and guests to the vacation and social destinations in those areas of the country (Go?hler & Pearson, 2000, p. 21).
Aim
Objectives
- To critically analyse the design concept to be able to foresee any future possible failures
- To critically analyse materials used to be able to foresee the performance of the bridge
- To be able to establish the protection measures applied to protect the bridge from corrosion due to environmental factors
- To be able to analyse the challenges and risks experienced during construction
Scope and Limitations
The scope of this structural engineering investigation is very clear and precise. The study aims at analysing the unique risks and challenging factors that were experienced during construction. Also, the study aims to analyse the design solutions that were applied in this project and the materials used. Lastly, the investigation is keen on the amount that was used for constructing the bridge and its viability to the economy ("Kurilpa Bridge", 2018). The investigation is limited to some aspects through. The investigation will not discuss in details the environmental impacts of the bridge to the environment. Notably, different teams will tackle different scopes depending on the technical knowledge and experience.
Sources of Information
The sources of information used were revised journal articles, books, online journals among others done by structural engineers about the Kurilpa Bridge.
Structural System Investigation [5 page limit]
About the Bridge Structure
Basically this range organization is roughly adjusted dispensing with the requirement for enormous projections and enabling the tensegrity structure to be developed by means of an adjusted cantilever method. The weight that was within the bridge above the vast water lengths is counteracted by applying tie downs at the external finishes of the side of the bridge. Bolster focuses flanking the navigational channel are more traditional with fortified cement bent sharp edge docks on pilecaps in the stream. At every one of these areas perpetual shake stays secure the solid filled tubular steel heaps to oppose the plan send affect powers (Queensland, 2010, p. 7).
The 6.5m clear width deck structure contains a fortified solid piece produced using full profundity precast boards joined by solid lines which are upheld by and act compositely with a progression of auxiliary steel cross shafts. Reason outlined precast deck boards are commonly 4.9m long and 3.4m wide with board profundity changing somewhere in the range of 200mm and 250mm (ASCE International Workshop on Computing in Civil Engineering, In Brilakis, In Lee, In Becerik-Gerber, & American Society of Civil Engineers, 2013, p. 15). The boards fuse cast-in fixings for balustrades, electrical and water powered administrations conductors and discounts for recessed light fittings. Cross pillars are moved steel I areas commonly 530mm profound associated with the solid deck by headed steel shear studs.
- An all-around requested erection progression and logic was delivered in exchange with the fabricator and erector. The required pre-set connection lengths and post and edge bar lengths were set out to ensure that when all people were raised at the correct length (with versatility reward considered) and in the foreordained course of action, the basic reaches would end up at satisfaction in the correct position with all connections prestressed without anyone else weight of the augmentation (Gostelow, 2018, p. 45). This system avoided the prerequisite for the 'on-the-fly' changes that are ordinarily required by customary erection techniques
- The places which were off the racks were to be used as endplate projections and associations. There are places upon which the tubes and created boxes were used. These structures were to be manufactured off the accessible plates.
- There was need for consideration of all the aspects to be considered to help in establishing the two parts of the bridge established on the cantilever structure. The cantilevers had to be coordinated to be able to drop and connect when required to.
Structural Design Drivers
- Engineering design of the creative and complex structure included modern and thorough non-straight investigations at each phase of the erection (Geotechnical and Structural Engineering Congress et al., 2016, p. 7).
- Static and dynamic basic investigations complex in nature was embraced to affirm sufficient quality and firmness and wind burrow testing to comprehend wind impacts (Wium, 2008, p. 49).
- Close joint effort among the bridge constructors and designers empowered the need for the bridge to be able to be cantilevered out from both sides where there lied strong docks to support the sides of the bridge ("Kurilpa Bridge", 2018).
- The unusualness of the riverside wharf to the bearing of the extension required a turned dock design, permitting a 400mm freedom between the wharf and Riverside Expressway.
Integration Considerations
Construction
The team built up a superstructure erection philosophy in light of adjusted cantilever erection from each of the two waterway docks, utilizing exact length segments (checked and balanced if vital before establishment. This imaginative methodology evacuated the need to make any post-establishment acclimations to any basic segments, yet required that the development organize examination be extraordinarily precise and intensive. Indeed reason composed programming was produced to permit a large number of segments to be put under test and properties checked. The exactness of this design was exhibited by the two landing planes of the bridge coming into contact with each other in the month of May 2009.
With an uncommon assistant edge, each piece of the arrangement and erection process must be made, refined and streamlined, and after that totally explored and attempted. In extension to normal assistant building, the essential design process included careful testing which ensured that the meticulously made game plan out of thousands of pre-amassed precast strong, steel and connection parts would fit together, with all parts of the completed structure in the correct theoretical position, and each connection precisely pretension by the weight of the structure. Steel gave the propriety required to address the sharp development and improvement issues (Beck & Cooper, 2012, p. 34). The classy issues spun around conveying a lightweight and slimline structure that appeared to skim. The tensegrity sort of the expansion especially required that capable weight people should be made to look like they are skimming in thin air which held by strands of Spiral Bridge thin in nature. Steel furthermore gave the slimline affect in the deck required to achieve the various physical constraints in the one of a kind brief, for instance, crossing the Riverside interstate, North Quay and the Brisbane River and keeping up the base vehicle and ocean movement envelopes required without obstacle. The accuracy and profitability of the fundamental building setup was a vital supporter to the accomplishment of the endeavour, including the assistant authority the exactness and adequacy of the helper plan.
Governance and Values Considerations
Engineering Systems Interrelationships
Conclusions and Recommendations
Summary of remarks of your investigation
As a world's first bridge of that kind, the works of the designers of this specific bridge has helped secure Australia, Queensland and Brisbane on the world stage as far as plan and development is concerned. Several designers in the industry of construction have borrowed from this concept and constantly inquired on how to do similar designs. Notably, the complexities of working on a world-first project such as this particular bridge usually requires with all stakeholders including the design engineers, fabricators, erectors, contractors and public works department (Beck & Cooper, 2012, p. 27). Such relationship empowers the parties involved in the construction to deliver a unique and new project which was complex on time and within the budgeted plan to the most astounding conceivable benchmarks.
Engineering systems context in inner urban environments
There are a lot of development works that happen in the urban environment that involves engineers. Structural engineers are key in establishing structures that are better designed, more cost effective and quite efficient in terms of performance. Structural engineers are important in advising the setting up of structures that will withstand the load exerted on the structure as well as the adverse environmental conditions without failing ("Kurilpa Bridge", 2018).
Observations of structural and broader civil engineering professional practice in inner urban environments
Observations for those embarking on a profession in civil engineering
References
Beck, H., & Cooper, J. (2012). Kurilpa Bridge. Mulgrave, Victoria: Images Publishing Group Pty Ltd.
Geotechnical and Structural Engineering Congress, In Hoit, M. I., In Chandran, Y. C., American Society of Civil Engineers, Structural Engineering Institute,, & American Society of Civil Engineers. (2016). Geotechnical and Structural Engineering Congress 2016: Proceedings of the Joint Geotechnical and Structural Engineering Congress 2016 : February 14-17, 2016, Phoenix, Arizona ; sponsored by the Geo-Institute of the American Society of Civil Engineers and Structural Engineering Institute of the American Society of Civil Engineers.
Keil, A. (2013). Pedestrian bridges: Ramps, walkways, structures. Munich: Institut fu?r internationale Architektur-Dokumentation.
Kulripa Bridge. (n.d.). Retrieved from https://issuu.com/accpublishinggroup/docs/kurilpabridge_ipad_1_
Morgenthal, G. (2018). Structural Engineering International. Structural Engineering International, 28(1), 5-5. doi:10.1080/10168664.2018.1431374
Pál, G., & Hiros, K. (2016). Pedestrian Bridge Over Türr-channel Baja, Hungary: A Unique Arch Bridge Design. Procedia Engineering, 156, 312-319. doi:10.1016/j.proeng.2016.08.302
Structural Engineering International Celebrates 25 Years of Publishing! (2015). Structural Engineering International, 25(4), 470-487. doi:10.1080/10168664.2015.11985538
Tensegrity-inspired Design for Kurilpa Bridge - Arup. (n.d.). Retrieved from https://www.arup.com/projects/kurilpa-bridge