Need complete the square inside the square root the denominator xnow
Solved Step by Step With Explanation-Trig Sub Integral Solution
Questions
Answer
Solved Step by Step With Explanation-Trig Sub Integral Solution
√(4x - x^2) = √(4 - x^2) * √x
Now, we can rewrite the integral as:
Now, we'll find dx in terms of dθ:
dx = 2cos(θ) dθ
∫(2x - 3)/(2cos(θ) * √x) * 2cos(θ) dθ
Step 3: Simplify the integral
∫(2x - 3)/(√x) dθ = ∫(2(2sin(θ)) - 3)/(√(2sin(θ))) * 2cos(θ) dθ
= ∫(4sin(θ) - 3)/(√(2sin(θ))) * 2cos(θ) dθ
Let's evaluate each integral separately:
a. ∫(4sin(θ))/(√(2sin(θ))) cos(θ) dθ:
Now, this is a simpler integral:
= 8∫(u)/(√2√u) du
= (4√2/3)(sin^(3/2)(θ/2)) + C
b. ∫(3)/(√(2sin(θ))) cos(θ) dθ:
= 3∫t^(-1) dt
= 3ln|t| + C
∫(2x - 3)/√(4x - x^2) dx = 2(4√2/3)(sin^(3/2)(θ/2)) - 3ln|√(2sin(θ))| + C
Step 7: Convert back to the original variable x
∫(2x - 3)/√(4x - x^2) dx = 2(4√2/3)(sin^(3/2)(arcsin(x/2)/2)) - 3ln|√(2sin(arcsin(x/2)))| + C
= (8√2/3)(x/2)^(3/2) - 3ln|√(2(x/2))| + C