Language:EN
Pages: 9
Words: 1296
Rating : ⭐⭐⭐⭐⭐
Price: $10.99
Page 1 Preview
label return labels read the binary imageimage imr

Label return labels read the binary imageimage imread

Component Labeling Assignment Answers

Question:

Write OpenCV code to perform the following tasks:

intensity values within the set V, where V={min-max}, to determine pixel

connectivity. The values of min and max are user-input parameters.

Please submit your source code, and adhere to the following regulations.

Only Python programming language can be used, in conjunction with

Component Labeling Answer and Explanation

Task 1: Implement the component labeling algorithm

This task involves labeling connected components in a binary image using 4-connectivity.

    label = 1

    labels = np.zeros_like(image, dtype=int)

    def is_valid(x, y):

        return 0 <= x < rows and 0 <= y < cols

            for dx, dy in connectivity:

                nx, ny = cx + dx, cy + dy

    for i in range(rows):

        for j in range(cols):

    return labels

# Read the binary image

labeled_image = label_components_4_connectivity(binary_image)

# Save the labeled image

    label = 1

    labels = np.zeros_like(image, dtype=int)

    def is_valid(x, y):

        return 0 <= x < rows and 0 <= y < cols

            for dx, dy in connectivity:

                nx, ny = cx + dx, cy + dy

    for i in range(rows):

        for j in range(cols):

    return labels

# Label the components using 8-connectivity

def label_components_intensity_range(image, min_val, max_val):

    # Initialize label and label matrix

    # Get image dimensions

    rows, cols = image.shape

        while queue:

            cx, cy = queue.pop(0)

                    queue.append((nx, ny))

    # Label the components

                bfs(i, j)

                label += 1

min_val = 100  # user input

max_val = 200  # user input

Task 4: Implement the size filter algorithm

def size_filter(image, min_size):

    size_mask = {label: (counts[i] >= min_size) for i, label in enumerate(unique)}

    # Apply the size filter

min_size = 500  # user input

# Filter the components by size

Combining all tasks, here's the full code:

import cv2

    connectivity = [(0, 1), (1, 0), (0, -1), (-1, 0)]

    rows, cols = image.shape

        while queue:

            cx, cy = queue.pop(0)

                    queue.append((nx, ny))

    for i in range(rows):

                label += 1

    return labels

    rows, cols = image.shape

    def is_valid(x, y):

            cx, cy = queue.pop(0)

            for dx, dy in connectivity:

    for i in range(rows):

        for j in range(cols):

    return labels

def label_components_intensity_range(image, min_val, max_val):

    def is_valid(x, y):

        return 0 <= x < rows and 0 <= y < cols

            for dx, dy in connectivity:

                nx, ny = cx + dx, cy + dy

        for j in range(cols):

            if min_val <= image[i, j] <= max_val and labels[i, j] == 0:

def size_filter(image, min_size):

    unique, counts = np.unique(image, return_counts=True)

_, binary_image = cv2.threshold(image, 127, 255, cv2.THRESH_BINARY)

labeled_image_4 = label_components_4_connectivity(binary_image)

min_val = 100

max_val = 200

cv2.imwrite('filtered_labeled_image.png', filtered_labeled_image)

This code covers all the tasks as specified. Ensure you have the necessary images (`binary_image.png` and `grayscale_image.png`) in the same directory as your script, and modify the paths as needed.

You are viewing 1/3rd of the document.Purchase the document to get full access instantly

Immediately available after payment
Both online and downloadable
No strings attached
How It Works
Login account
Login Your Account
Place in cart
Add to Cart
send in the money
Make payment
Document download
Download File
img

Uploaded by : vedika rana

PageId: DOCE6BBE37