Language:EN
Pages: 15
Rating : ⭐⭐⭐⭐⭐
Price: $10.99
Page 1 Preview
hessian matrix independent ofh the parameters

Hessian matrix independent ofh the parameters

Review: Fit a line to N data points

ˆ y

y = a (x − ˆ x ) + b

Pivot point:

ˆx
ˆ b yi σ i

2

,

Var ˆ b [ ]=

=
1 σ i

2

1 σ i

For slope a, set b=0 and find a by optimal scaling:

ˆ a = yi xi − ˆ x ) σi 2
1 2 σ i

(xi −ˆ x )

2 σ i

2

(xi −ˆ x )
α 0 = ˆ ( yi − ˆ α 1 P1(xi) )P0(xi) σi 2

Var ˆ [α 0

] = 1 ˆ x
P0

Pivot point:

P0 2(xi) σ i

2

2(xi) σ i 2
α 1 = ˆ ( yi − ˆ α 0 P0(xi) )P1(xi) σi 2

,

P1 2(xi) σ i 2

LINEAR REGRESSION:

y =

∑αk Pk(x)

Iterate ( if patterns not orthogonal ).


(

2

)ci
)si

χ2≡ N # yi −(a xi + b) &

2

% $ ( '
σ i
i=1
x ya xb (
y = a x + b

0 = ∂ χ 2∂ b= −2

(ya xb

)σ 2

b χ2(a,b)
a x2 σ 2 + bx σ 2 = x y σ2
a x σ 2 + b∑1 σ 2 =

ˆb

Matrix form:

#
Σx /σ2 & # a
Σx y /σ2
% (

%

%

%
$

Σ 1/σ2
b
Σ y /σ2
ˆa
$

'

H α =

c(y)

( c = correlation vector )
= H

"
$$
#

The Hessian Matrix

H jk ≡1 2
, χ2≡ N

 

i=1

ajak

(ya xb ) σ 2

∂2χ2
a2 = 2 i

i




 

∂2χ2 2

xi€ 2 /σ i 2


  i

For linear models, Hessian matrix is independent of

the parameters, and χ2 surface is parabolic.

Parameter Uncertainties Hessian matrix describes the curvature of the χ2 surface :

χ2(α) = χ2( ˆ α ) + j,k ( α j − ˆ α j )Hj kαk− ˆ α k
1 ∂2χ2
ajak

the parameters, and χ2 surface is parabolic. For a one-parameter fit:

if ˆ α minimizes χ 2, then Var( ˆ α ) =

Cov(aj,ak) = H−1 "#

General Linear Regression


Scale M Patterns M

Example:

Polynomial: y(x) = a0 + a1 x + a2 x2+ ...+ aM −1 xM −1

N
= N

σ i 2yi− 

M
χ2≡
 

i=1

i=1 j

Normal Equations:

2 N # yi M aP(x)
Pk(xi)
%

(

= −

% $
i j
M # N Pji Pki
N

yi Pki

PkiPk(xi)

%
% $
=
N
j i i
H jk = N

Pji Pki

c(y)
M
H jk aj = ck(y)

2
σ i

k =
j i i

matrix H.

that diagonalise H. ( More details later… )

H jkαk

M

∑αk
N

Pj(xi)Pk(xi)

2 ∂α j∂αk =

N

= j j =

•In the general linear case we fit M functions Pk (x) with scale

factors ak:

Linear Model :y(x) =

M∑αk Pk (x)

k
H1 ∂2χ2 N
∂α j ∂αk =
i=1

Elliptical χ2 contours, unique solution by linear regression (matrix inversion).

Non - Linear Models :

j,k j− ˆαj )Hj kαk− ˆαk )

H1

∂2χ2

depends on the non-linear parameters.

∂α j ∂αk

A and B are scale
parameters.

∂µ
A= g

∂µ

+ Δσ ∂µ ∂σ

x0 and σ are non-linear parameters.

A= g∂µ

B=1 ∂µ∂σ = A g η2 /σ

∂µ

∂σ

Simplex = cluster of M+1 points in the

3 2 6

8

1

place with lower χ2 .

4 5 7

3. Repeat until converged.

3. Take a random step, e.g. using a Gaussian

random number with same σi (and
covariances) as “recent” points.

MCMC requires no derivativesJ Easy to code J

MCMC generates a “chain” of points tending to move downhill, then settling into

Relative radial velocity (km s-1)

0.5

0
-1
0.6 0.8 1 1.2
-0.02
0
0.02
0.04
0.06
0.08

0.1
0.12
0.14

0.95

1

You are viewing 1/3rd of the document.Purchase the document to get full access instantly

Immediately available after payment
Both online and downloadable
No strings attached
How It Works
Login account
Login Your Account
Place in cart
Add to Cart
send in the money
Make payment
Document download
Download File
img

Uploaded by : Divit Doshi

PageId: DOCD7531D6