Had larger regret follow the regularized leader algorithmin this section
CS229T/STATS231: Statistical Learning Theory
|
||
---|---|---|
“Follow The Leader” (FTL) algorithm
On each iteration t = 1, . . . , T, we select
possible regret. In today’s lecture, our goal is to fix FTL.
2 “Be The Leader” Algorithm
would end up with zero regret.
Lemma 1 (BTL). For the regret of the BTL algorithm, it holds that
�ft(wt+1) − min w∈Ω�ft(w) = f1(w2) + . . . + fT (wT+1) − (f1(wT+1) + . . . + fT (wT+1)) =
= f1(w2) + . . . + fT−1(wT ) − (f1(wT+1) + . . . + fT−1(wT+1))
ft(wt+1) − min w∈Ω | T � |
ft(w) ≤ f1(w2) + . . . + | fT−1(wT ) − (f1(wT ) + . . . + | ||
---|---|---|---|---|---|
By recursively repeating the same argument, we eventually get that
� | ft(wt+1) − min w∈Ω | � |
|
---|
R = | T � |
ft(wt) − min w∈Ω | T � |
ft(w) ≤ |
---|
In this section, we introduce and study the properties of the “Follow the Regularized Leader”(FTRL) algorithm.
“Follow The Regularized Leader” (FTRL) algorithm On each iteration t = 1, . . . , T, we select
� | (3) |
---|
∀x, y, f(x) − f(y) ≥ ⟨∇f(y), x − y⟩.
We expand this property to define the notion of a-stong convexity.
(4) |
---|
|
|
F(w) ≜ | � | ||
---|---|---|---|---|---|
t � |
|||||
Then it follows that | |||||
|
Lemma 3. Suppose F is α-strongly convex, f is convex, and let
|
|
|
---|---|---|
|
|
(5) |
---|---|---|
(6) |
≤ ||∇f(w)||2 ·�α(f(w) − f(w′) 1 |
(8) |
---|---|
Definition 4. F is α-strongly convex w.r.t. norm || · || on Ω if ∀x, y ∈ Ω,
f(x) − f(y) ≥ ⟨∇f(x), x − y⟩ +α 2||x − y||2.
|
|
|
---|---|---|
We can now bound the regret of the FTRL algorithm.
Theorem 6 (Regret bound of FTRL). Suppose φ is 1-strongly convex w.r.t. || · ||. Then,
R ≤D η+ η | T � |
---|
|
R ≤ O(G√TD). |
Proof. Let
Then, using the BTL lemma,
T T T
�ft(wt) − arg min�ft(w) ≥ f0(w0) +�ft(wt) −�ft(w∗)
=�ft(wt) −�ft(w∗) + f0(w0) − f0(w∗).
By Lemma 5 with F =�t−1 i=0fi, G = �t i=0fi, f = ft and α =
1T
η, we get that
T ≤D η+ η�||∇ft(wt)||2∗. |
|||
---|---|---|---|
� |