Fax narayananpt- aits iit-jee
NPT-1 (AITS – IIT-JEE 2007)
|
(b) one–one into | |
---|---|---|
|
||
|
||
|
(b) [2, 1] | |
(d) none of these |
NPT-1 (AITS – IIT-JEE 2007)
|
x | ≠ |
|
||||||
---|---|---|---|---|---|---|---|---|---|
4. f(x) = | 0 |
|
|||||||
x | = | ||||||||
−1 | x | < | |||||||
|
x | = | 0 |
|
|||||
x | > | 0 |
(a) f(0) = ln2 ⇒ f is continuous at x = 0 (c) f(0) = e2⇒ f is continuous at x = 0
(b) f(0) = 2 ⇒ f is continuous at x = 0
(d) f has an irremovable discontinuity at x = 0
7. The values of x for which the function f(x) = sin–1 sin |x| is increasing can be given by
8. Let | a | 2 | + | b | 2 | = | 1 | |
---|---|---|---|---|---|---|---|---|
x | 2 | y | 2 | |||||
|
Space for rough work
9. Let a (a < 0, a ∉ I) be a fixed constant and t be a parameter then the set of values of t for the function
x | < | 1 | (b) [[a], [–a]) | |||||
---|---|---|---|---|---|---|---|---|
(d) [[a – 1], [–a + 1]) | ||||||||
10. Let f(x) = | |
2(2e | − | e ), x |
|
|||
x | ≥ | 1 |
(a) x (|lnx| – (x – 1) + c (b) x |lnx| – x + c
(c) x (|lnx| + (x – 1) + c (d) x + x |lnx| + c
13. |
|
| – 2f | | 2 sin | | π | | x | + | 1 | | | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | | 4 | | | |||||||||||
+ | xcos |
|
|||||||||||||||
2 |
|
|
---|
(b) f(x) = tan (tan-1 x) & g(x) = cot (cot1 x)
|
||||||
---|---|---|---|---|---|---|
(c) | 0 |
x)dx | = | 2ln |
|
(b) differentiable at x = 1
(d) differentiable at x = 317. If f is an odd continuous function in [–1, 1] and differentiable in (–1, 1) then (a) f′(a) = f(1) for some a∈(–1, 0)
(b) f′(b) = f(1) for some b∈ (0, 1)
(c) n(f(α))n–1 f′(α) = (f(1))n for some α∈ (–1, 0), n∈N
(d) n(f(β))n–1 f′(β) = (f(1))n for some β∈ (0, 1), n∈N
NPT-1 (AITS – IIT-JEE 2007)
NPT-1 (AITS – IIT-JEE 2007)
NPT-1 (AITS – IIT-JEE 2007)
(c) | The value of a for which the area of the | (R) | |
---|---|---|---|
triangle included between the axes and | |||
constant is
FNS House, 63, Kalu Sarai Market, Sarvapriya Vihar, New Delhi-110016 • Ph.: (011) 32001131/32, Fax : (011) 41828684
these parameters for which the results given are correct. Match the integrals in List–I with the values of parameters A, B in List–II so that the given result is correct.
(a) |
|
(P) | Column II | 1 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
e | 2x | − | x 2e dx |
− | =− | |||||||
∫ | e | 2x | 4 |