E-jw ejw arg e-jw cos cos arg ejw arg ejw odd function let real
1
IV Discrete –Time Fourier transform DTFT.
with period 2π, since a function of a
periodic function is periodic, and has the same period. Since the forward transform is a Fourier series, the inverse transform,x(n) = 1/2π∫ X(ejw) ejwn dw
= | X(ejw) | ejφ(w)
| X(ejw) | = √ Re2 {X(ejw)} + Im2 {X(ejw)}
= tan-1 |
---|
X(ejw) = |
|
---|
Then,
X(ejw) = ∑ x(n) e-jwn = ∑δ(n) e-jwn
= 1 = X(ejw)
5
= |
---|
1-(e-jw )N H(ejw) = ∑ 1 • (e-jw )n =
1- e-jw
6
1- cos(wN) + j sin(wN) =
1- cos(w) + j sin(w)
|
---|
sin(wN) φ(w) = tan-1
1- (cos(wN)+ π u (- (1- (cos(wN) )) sin(w)
- tan-1
1-(cos(w)
Example Find the DTFT of x(n) = .5n u(n)
X(ejw) = ∑ .5n (e-jw )n = ∑ (.5 e-jw )n
= |
---|
X(ejw) = 1 + e-jw
x(n) = 1 / 2π∫ (1+e-jw) ejwn dw
11 Frequency Response From Difference Equation
Shift Theorem: F{x(n–no) } = e-jwn⋅X(ejw) Proof: ∑ x(n–no) e-jwn|n ← n + no = ↑
∑ ak F{y(n-k)} = ∑ bk F{x(n-k)},
Using the shift theorem,
Properties of the DTFT
(1) X(ejw) is a periodic function of w, with period 2ππππ
13 Im {X (ejw)}
= ∑ Im {x(n)[ cos(wn)-j sin(wn)] }
| X (ejw)|2 = X (ejw) • X (ejw)*
but X(ejw)* = X (e-jw)
= - tan-1 |
|
---|
+ πu (-∑ x(n) cos(wn) )
15
(4) let x(n) be a real, even sequence,
x(n) = x(-n). Then X (ejw) is real and Im { X (ejw) } = 0.
= x(0) + 2 ∑ x(n) cos(wn) which is real and even.
16 (5) let x(n) be odd and real, x(n) = -x(-n) x(0) = 0.
= 2j ∑ x(n) (e-jwn - ejwn) / 2j
= -2j ∑ x(n) sin(wn)
= ejwn H(ejw)
Note: ∑ x(g(n)) e-jf(w)g(n) = X(ejf(w))
18
Proof: Take the Fourier Transforms of both sides as
Y (ejw) = ∑∑ h(k) x(n-k) e-jwn
e-jwk e-jw(n-k)
= ∑∑ h(k) e-jwk x(n-k) e-jw(n-k)
= ∑ h(k) e-jwk∑ x(m) e-jwm
= H(ejw) • X(ejw)
= 1/ 2π∑∑ x(n) h(m) e-jnw∫ eju(n-m) du
= ∑ x(n) h(n)e-jnw
20
F { x(n) ∙ h(n) } = ∑ x(n) h(n)e-jnw
= 1/2π∫∫ X(ejv) H(eju) [ δ(u + v - w) +
δ(u+v-w-2π) du dv