Language:EN
Pages: 39
Rating : ⭐⭐⭐⭐⭐
Price: $10.99
Page 1 Preview
ejw ejw arg ejw cos cos arg ejw arg ejw odd functi

E-jw ejw arg e-jw cos cos arg ejw arg ejw odd function let real

1

IV Discrete –Time Fourier transform DTFT.

with period 2π, since a function of a
periodic function is periodic, and has the same period. Since the forward transform is a Fourier series, the inverse transform,

x(n) = 1/2π∫ X(ejw) ejwn dw

= | X(ejw) | ejφ(w)

| X(ejw) | = √ Re2 {X(ejw)} + Im2 {X(ejw)}

= tan-1
X(ejw) =

1
D(ejw)

Then,

X(ejw) = ∑ x(n) e-jwn = ∑δ(n) e-jwn

= 1 = X(ejw)

5

=

1-(e-jw )N H(ejw) = ∑ 1 • (e-jw )n =
1- e-jw

6

1- cos(wN) + j sin(wN) =
1- cos(w) + j sin(w)

| H(ejw) | =

sin(wN) φ(w) = tan-1
1- (cos(wN)

+ π u (- (1- (cos(wN) )) sin(w)
- tan-1
1-(cos(w)

Example Find the DTFT of x(n) = .5n u(n)

X(ejw) = ∑ .5n (e-jw )n = ∑ (.5 e-jw )n

=

X(ejw) = 1 + e-jw

x(n) = 1 / 2π∫ (1+e-jw) ejwn dw

11 Frequency Response From Difference Equation

Shift Theorem: F{x(n–no) } = e-jwn⋅X(ejw) Proof: ∑ x(n–no) e-jwn|n ← n + no = ↑

∑ ak F{y(n-k)} = ∑ bk F{x(n-k)},

Using the shift theorem,

Properties of the DTFT

(1) X(ejw) is a periodic function of w, with period 2ππππ

13 Im {X (ejw)}

= ∑ Im {x(n)[ cos(wn)-j sin(wn)] }

| X (ejw)|2 = X (ejw) • X (ejw)*

but X(ejw)* = X (e-jw)

= - tan-1

-∑x(n)sin(-wn) ∑ x(n)cos(wn)

+ πu (-∑ x(n) cos(wn) )

15

(4) let x(n) be a real, even sequence,
x(n) = x(-n). Then X (ejw) is real and Im { X (ejw) } = 0.

= x(0) + 2 ∑ x(n) cos(wn) which is real and even.

16 (5) let x(n) be odd and real, x(n) = -x(-n) x(0) = 0.

= 2j ∑ x(n) (e-jwn - ejwn) / 2j

= -2j ∑ x(n) sin(wn)

= ejwn H(ejw)

Note: ∑ x(g(n)) e-jf(w)g(n) = X(ejf(w))

18

Proof: Take the Fourier Transforms of both sides as
Y (ejw) = ∑∑ h(k) x(n-k) e-jwn
e-jwk e-jw(n-k)
= ∑∑ h(k) e-jwk x(n-k) e-jw(n-k)
= ∑ h(k) e-jwk∑ x(m) e-jwm
= H(ejw) • X(ejw)

= 1/ 2π∑∑ x(n) h(m) e-jnw∫ eju(n-m) du

= ∑ x(n) h(n)e-jnw

20

F { x(n) ∙ h(n) } = ∑ x(n) h(n)e-jnw

= 1/2π∫∫ X(ejv) H(eju) [ δ(u + v - w) +

δ(u+v-w-2π) du dv

You are viewing 1/3rd of the document.Purchase the document to get full access instantly

Immediately available after payment
Both online and downloadable
No strings attached
How It Works
Login account
Login Your Account
Place in cart
Add to Cart
send in the money
Make payment
Document download
Download File
img

Uploaded by : Shawn Wright

PageId: DOCB8AD086