Compute the wronskian they are fundamental set solutions and the general solution what claimed and the
Math 3301 | Homework Set 5 – Solutions | 10 Points |
---|
2. (2 pts)
g x ( ) | = | x | −2 | e | x | − | x | −3 e | x | + | cx | −3 | . The guess for the particular and its | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
( ) | = | c 1 e | −10 | t | + | c t 2 | e | −10 | t | ||||||||||
3. (2 pts) I’ll leave it to you to verify that | y c |
derivatives are,
100 | At | 3 | + | ( | 60 | A | + | 100 | B t ) | 2 | + | ( | 6 | A | + | 40 | B | + | 100 C t ) | + | 2 | B | + | 20 C | + | 100 | D | = | 50 t | 3 | − |
---|
Setting coefficients equal and solving gives,
The general solution is then,
y t ( ) | = | c 1 e | −10 | t | + | c t 2 e | −10 | t | + | 1 | t | 3 | − | 3 | t | 2 | + | 1 | t | − | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2 | 10 | 20 | ||||||||||||||||||||||
6. (3 pts) I’ll leave it to you to verify that | y c | ( ) | = | c 1 e + | c 2 | e | 8 | t | . The guess for the particular solution and |
Plugging this into the differential equation and simplifying gives,
e | 3 t | | ( | −11 | A | − | 3 | B | ) | cos | ( ) ( | 3 | A | − | 11 B | ) | sin | ( ) | | = | 5 e | 3 t | cos |
|
---|
26 cos ( )−26 3 sin ( )
7. (3 pts) I’ll leave it to you to verify that cy ( ) = c 1 cos 2 ( t ) + c 2 sin 2 ( t ) . The guess for the particular
Homework Set 5 – Solutions | 10 Points |
---|
Plugging this into the differential equation and simplifying gives,
e | 6 | t | : | 2 | A | + | 12 | B | + | 40 C | = | ⇒ | A | = | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
t e | 6 | t | : | 24 | A | + | 40 | B | = | B | = −3 | |||||||||||||||||
t | 2 | e | 6 | t | : | 40 | A | = |
|
C | = |
|
||||||||||||||||
= | c 1 | ) | 5 t | 2 | − | 3 t | + | |||||||||||||||||||||
+ | c 2 | sin 2 ( t | ) ( | 13 | ) | e | 6 | |||||||||||||||||||||
y t ( ) | ||||||||||||||||||||||||||||
20 |
Now apply the initial conditions.
The actual solution is then,
y t ( ) | = − | 33 |
) | − |
|
) ( | 5 t | 2 | − | 3 t | + | 13 |
) | e | 6 |
---|
general solution is ( ) | = | c 1 e | r t 1 | + | c 2 | e | r t 2 | . | − | 1 | t | − | 1 | t | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
|||||||||||||||||||||||||||||
4. I’ll leave it to you to verify that | y c | = | c 1 e | 2 | cos | ( | 5 | t | ) | + | c 2 | e | 2 | sin | ( | 5 | t | ) |
|
Plugging this into the differential equation and simplifying gives,
Math 3301 | ( | −37 | A | − | 9 | B | ) | 10 Points | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
cos 3 ( ) ( | 9 | A | − | 37 | B | ) | sin 3 ( ) | = |
y t ( ) | = | c 1 e | −4 | t | + | c 2 | e | 7 | t | + | 18 | cos 3 ( ) | − | 74 |
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
145 | 145 |