Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . xiii Preface . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . xv
Duration, Modified Duration, and Convexity . . . . . . . . . . . . .
. . . . . . . . 31 Duration . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Properties of
Macaulay Duration . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 36 Modified Duration . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 37 Convexity . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 41
3 Bond Pricing and Spot and Forward Rates
47
Yield Curve Smoothing . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . 84 Smoothing Techniques . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Cubic
Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 87 Non-Parametric Methods . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Spline-Based
Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 88 Nelson and Siegel Curves . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . 91 Comparing Curves . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 92
PARTTWOSELECTED CASHAND DERIVATIVE INSTRUMENTS
Non–Plain Vanilla Interest Rate Swaps . . . . . . . . . . . . . . . .
. . . . . . . . . . 119 Swaptions . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Valuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 122 Interest Rate Swap Applications .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Corporate and Investor Applications . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 124 Hedging Bond Instruments Using Interest Rate
Swaps . . . . . . . . . . . . . . 127
8 Options 133
Credit Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 175 Credit Risk and Credit
Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
175 Applications of Credit Derivatives . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 177 Credit Derivative Instruments . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . 178 Credit Default
Swap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 178
Credit Options . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 179 Credit-Linked Notes . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
Total Return Swaps . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 181 Investment Applications . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 Capital
Structure Arbitrage . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 184 Exposure to Market Sectors . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . 184 Credit Spreads . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 184 Funding Positions . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 185 Credit-Derivative
Pricing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 186 Pricing Total Return Swaps . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . 187 Asset-Swap Pricing . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
187 Credit-Spread Pricing Models . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 188
13 Hybrid Securities 227
Floating-Rate Notes . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 228 Inverse Floating-Rate Notes . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
Hedging Inverse Floaters . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 233 Indexed Amortizing Notes . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 234 Advantages
for Investors . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 236 Synthetic Convertible Notes . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . 237 Investor Benefits . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 238 Interest Differential Notes . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 238 Benefits for Investors .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 240
Motivation Behind CDO Issuance . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 284 Balance Sheet–Driven Transactions . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 285 Investor-Driven
Arbitrage Transactions . . . . . . . . . . . . . . . . . . . . . . . . .
. 285 Analysis and Evaluation . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 286 Portfolio Characteristics . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
Cash Flow Analysis and Stress Testing . . . . . . . . . . . . . . . . .
. . . . . . . . . . 286 Originator’s Credit Quality . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . 287 Operational
Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 287 Review of Credit-Enhancement Mechanisms . . . . . .
. . . . . . . . . . . . . . . 288 Legal Structure of the Transaction . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 288 Expected
Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 289
PARTTHREESELECTED MARKET TRADING CONSIDERATIONS
Appendix: The Black-Scholes Model in Microsoft Excel . . . . . . . .
. . . 331 References . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 333 Index. . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 345
The Bond Instrument
B informs viewers where the main stock market indexes closed that day
and which is the cornerstone of the U.S. economy. All evening
televi-sion news programs contain a slot during which the newscaster
onds are the basic ingredient of the U.S. debt-capital market,
no longer necessarily the case. Asset-backed bonds, for instance, are
issued in a number of tranches—related securities from the same
issuer—each of which pays a different fi xed or fl oating coupon.
Nevertheless, this is still commonly referred to as the fi xed-income
market.
Basic Features and Definitions
One of the key identifying features of a bond is its issuer,
the entity that is borrowing funds by issuing the bond in the market.
Issuers generally fall into one of four categories: governments and
their agencies; local govern-ments, or municipal authorities;
supranational bodies, such as the World Bank; and corporations. Within
the municipal and corporate markets there are a wide range of issuers
that differ in their ability to make the interest payments on their debt
and repay the full loan. An issuer’s ability to make these payments is
identifi ed by its credit rating.
In the United States, all bonds make periodic coupon payments except
for one type: the zero-coupon. Zero-coupon bonds do not pay any
coupon. Instead investors buy them at a discount to face value and
redeem them at
Since fi xed-income instruments are essentially collections of cash
fl ows, it is useful to begin by reviewing two key concepts of cash fl
ow analysis: discounting and present value. Understanding these concepts
is essential. In the following discussion, the interest rates cited are
assumed to be the market-determined rates.
Financial arithmetic demonstrates that the value of $1 received today
is not the same as that of $1 received in the future. Assuming an
interest rate of 10 percent a year, a choice between receiving $1 in a
year and re-ceiving the same amount today is really a choice between
having $1 a year from now and having $1 plus $0.10—the interest on $1
for one year at 10 percent per annum.
The investor will receive $1.479 in interest at the end of the term.
The total value of the deposit after the three months is therefore $100
plus $1.479. To calculate the terminal value of a short-term
investment—that is, one with a term of less than a year—accruing simple
interest, equation (1.1) is modifi ed as follows:
|
|
|
⎢⎢⎣ |
|
|
⎜⎜⎝ |
year |
⎟⎟⎠⎥⎥⎦ |
(1.2) |
Note that, in the sterling markets, the number of days in the year is
taken to be 365, but most other markets—including the dollar and euro
markets—use a 360-day year. (These conventions are discussed more fully
below.)
Now consider an investment of $100, again at a fi xed rate of 6 per-cent
a year, but this time for three years. At the end of the fi rst year,
the investor will be credited with interest of $6. Therefore for the
second year the interest rate of 6 percent will be accruing on a
principal sum of $106. Accordingly, at the end of year two, the interest
credited will be $6.36. This illustrates the principle of
compounding: earning interest on interest. Equation (1.3)
computes the future value for a sum deposited at a compounding rate of
interest:
= |
100 |
× |
⎡⎣⎢( 1 |
+ |
0 015 ) 4 |
⎤
⎦⎥= |
100 |
× |
1 6136 |
= |
$ 106 136
|
As the example above illustrates, more frequent compounding results
in higher total returns. FIGURE 1.1 shows the interest
rate factors cor-responding to different frequencies of compounding on a
base rate of 6 percent a year.
This shows that the more frequent the compounding, the higher the
annualized interest rate. The entire progression indicates that a limit
can be defi ned for continuous compounding, i.e., where m =
infi nity. To defi ne the limit, it is useful to rewrite equation (1.4)
as (1.5).
|
r |
|
COMPOUNDING FREQUENCY |
INTEREST RATE FACTOR FOR 6%
|
Semiannual |
|
+ |
r |
|
|
Quarterly |
⎛
⎝⎜⎜⎜1
|
+ |
r
4 |
⎞4 |
|
Monthly |
|
+ |
r |
⎟⎟⎟⎠
|
= 1.061678
|
Daily |
|
+ |
r
365 |
|
|
FV |
= |
PV |
⎡⎛
⎢⎢⎢⎣⎝⎜⎜⎜1 |
+ |
r⎞m r rn
m⎟⎟⎟⎠ ⎥⎥⎥⎦
|
(1.5) |
= |
PV |
⎡⎛
⎢⎢⎢⎢⎣⎜⎜⎜⎜⎝1 |
+ |
= |
PV |
⎡⎛
⎢⎢⎣⎜⎜⎜⎝1 |
+ |
In (1.6) e rn is the exponential function of
rn. It represents the continuously compounded interest rate
factor. To compute this factor for an interest rate of 6 percent over a
term of one year, set r to 6 percent and n to 1,
giving
PV |
= |
|
|
|
FV |
|
|
|
|
|
( 1 |
+ |
r |
× |
days year |
) |
(1.8) |
Just as future and present value can be derived from one another,
given an investment period and interest rate, so can the interest rate
for a period be calculated given a present and a future value. The basic
equation is merely rearranged again to solve for r. This, as
will be discussed below, is known as the investment’s
yield.
Discount factors can also be used to calculate the future value of a
present investment by inverting the formula. In the example above, the
six-month discount factor of 0.98756 signifi es that $1 receivable in
six months has a present value of $0.98756. By the same reasoning, $1
today would in six months be worth
Using this six-month discount factor, the one-year factor can be
derived from the second bond in fi gure 1.2, the 8 percent due 2001.
This bond pays a coupon of $4 in six months and, in one year, makes a
payment of $104, consisting of another $4 coupon payment plus $100
return of principal.
The price of the one-year bond is $101.89. As with the 6-month bond,
the price is also its present value, equal to the sum of the present
values of its total cash fl ows. This relationship can be expressed in
the following equation:
specifi c bond. The approach, however, is still worth knowing.
Note that the discount factors in fi gure 1.3 decrease as the bond’s
maturity increases. This makes intuitive sense, since the present value
of something to be received in the future diminishes the farther in the
future the date of receipt lies.