Calculate the equivalent single-phase frictional head loss
|
---|
If you underestimate frictional
losses along a pipeline, you
[Gunnernett http://en.wikipedia.org/wiki/File:FPSO_diagram.PNG] losses in a pipeline, you
could have made the pipe D
smaller or the lines longer;
empirical models.
|
|
|
---|---|---|
3 categories/approaches for modelling 2-phase flow Category 1: pseudo-single phase flow models (no slip) Category 2: separated flow models (allow slip)
Category 3: consider both flow patterns and slip
Hagedorn & Brown (1964) correlation
Beggs & Brill (1973) correlation
EG55F8/G8 Flow Assurance 2020/21 |
---|
The phases are modelled as a single, pseudo-fluid.
Assume that pseudo-fluid flow can be described by conventional equations for single-phase flows by defining appropriate effective properties.
|
---|
Elevation head loss/gain
Use the no-slip mixture density
Frictional head loss
|
---|
ρ | u | d | u | = | G | d | | G | | = | G | 2 | d | | 1 | | = | | m | g | + | m l | | 2 | d | | 1 |
|
||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
h | h | h | | ρ h | | | ρ h | | | A | | | ρ h |
|
EG55F8/G8 Flow Assurance 2020/21 |
EG55F8/G8 Flow Assurance 2020/21 |
---|
DA: I will go through this worked example, and the derivation of the two-phase multiplier for homogenous flow (the next slide) in the online workshop on 3/3/2021
(or see Blackboard Collaborate Ultra on MyAberdeen for the recording)
|
two-phase multiplier:
Two-phase multipliers as a function of mass quality
− | | d p |
|
h | = − | d p | | Φ | 2 | 10000 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| d s | d s | | l | er φ2 | 1000 | Phi_l | ||||||||||||
phi_g | |||||||||||||||||||
l | |||||||||||||||||||
− | d p | h | = − | d p | | Φ |
|
||||||||||||
d s | d s | |
|
Two-phase multiplier φ2 | 100 | 0.4 | 0.6 | 0.8 | 1 | ||||||||||
g | |||||||||||||||||||
10 | |||||||||||||||||||
|
|||||||||||||||||||
|
1 | ||||||||||||||||||
|
|
||||||||||||||||||
3 categories/approaches for modelling 2-phase flow Category 1: pseudo-single phase flow models (no slip) Category 2: separated flow models (allow slip)
Category 3: consider both flow patterns and slip
EG55F8/G8 Flow Assurance 2020/21 |
---|
![]() |
|
|||||||||||||||||
| ||||||||||||||||||
ρ tptp u | d | u | tp | + | d | p | + | ρ tp | g | d | z | = | ||||||
|
pipes.
|
|
|
---|---|---|
| ||
| ||
| ||
| ||
EG55F8/G8 Flow Assurance 2020/21 |
−ρ tp | = | Φ | 2 | ρ l g |
|
− | d h f,l |
|
= | Φ | 2 | ρ g | g | d h f,g | |
||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
d s | L | d s | G | d s | |||||||||||||||||||||||
= | Φ | 2 | 2C | f,l | u sl 2 |
|
= | Φ | 2 | ρ g | g | | 2C | f,g | u sg 2 |
|
|||||||||||
L | gD | G | gD | ||||||||||||||||||||||||
|
What multiplier should we use?
EG55F8/G8 Flow Assurance 2020/21 |
---|
Lockhart and Martinelli (1949):
correlated pressure drop data from
pipes 25 mm (1 in) in diameter or
less within about 650 percent.
|
|
|
---|---|---|
| ||
pipe diameters up to about 0.1 m (4
in) with about the same accuracy. | Martinelli parameter |
---|---|
What multiplier should we use?
Calculate the Lockhart-Martinelli parameter X
Φ = + L | C | + | 1 | | 20 12 |
||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
X | X | 2 | 2 |
|
|
||||||||
Φ | 2 | = + | |||||||||||
CX | + | X | |||||||||||
G |
Procedure:
1. Calculate Rek for each phase.2. Calculate the equivalent single-phase frictional head loss.
v sg | = | Q g | = | 4 0.835 | = | ||||
---|---|---|---|---|---|---|---|---|---|
A | π D | ||||||||
v sl | = |
|
= | 4 0.0368 | = |
|
|||
A | π D | ||||||||