Blocksize blocksize cuda events for timing cudaevent start
Matrix multiplication Assignment Answers
Question:
GPU calculation with zero copy:
consider cudaEventRecord() and cudaEventSynchronize()
Print out the time for all GPU calculations
Matrix multiplication Answer and Explanation
3. Define the CUDA Kernel: Write a kernel function that performs matrix multiplication. Each thread block will compute a portion of matrix C.
4. Invoke the Kernel: Launch the kernel with appropriate block and grid dimensions.
#include <cuda_runtime.h>
#define N 1024 // Matrix size (assuming square matrices)
if (row < n && col < n) {
float sum = 0.0f;
}
}
float *h_A, *h_B, *h_C;
cudaHostAlloc((void)&h_A, size, cudaHostAllocDefault);
h_A[i] = 1.0f; // Example initialization
h_B[i] = 2.0f; // Example initialization
cudaMalloc((void)&d_B, size);
cudaMalloc((void)&d_C, size);
dim3 blockSize(16, 16); // Threads per block (16x16 = 256 threads per block)
dim3 gridSize((N + blockSize.x - 1) / blockSize.x, (N + blockSize.y - 1) / blockSize.y);
// Record start event
cudaEventRecord(start);
cudaEventSynchronize(stop);
// Calculate elapsed time
// Print timing results
std::cout << "GPU computation time: " << milliseconds << " ms" << std::endl;
std::cout << h_C[i * N + j] << " ";
}
cudaFree(d_B);
cudaFree(d_C);
cudaEventDestroy(start);
cudaEventDestroy(stop);
- Kernel Definition: `matrixMultiply` kernel computes the matrix multiplication for elements within the grid and block dimensions.
- Timing: CUDA events (`cudaEventRecord`, `cudaEventSynchronize`, `cudaEventElapsedTime`) are used to measure the execution time of the kernel.