Algorithm and pseudo code for the calculation
Introduction
Objectives
Methodology
Algorithm and pseudo code for the calculation
|
Implementation design and formula
General formula for two tailed t vale
a)
Tc α = (1 – 100* α)th element in the sorted list
i<= n/2 i=>n/2
Solution and explanation
ALLOCATE(x(n)) ALLOCATE(y(n)) ALLOCATE(Ta((Iteration+1)/2)) |
Million times iteration so that we can get million array of size n
x(i)=z(i) y(i)= z(n+i) call calTvale(R , S , n, t) wilx = t END IF end do |
deallocate (R) deallocate (S) stop end program using_uni1 |
The Implementation Results
Table of critical values for Maximum T-Test and Wilcoxon
--------------------------------------------------------------------------------------
df al=.001 al=.01 al=.025 al=.050
8 14.0267 4.00000 3.25553 2.53287
10 9.59463 3.86513 3.00000 2.27863
20 9.00000 3.00000 2.52236 2.00000
22 8.12252 2.99756 2.47980 2.00000
32 6.54099 2.76151 2.35685 2.00000
48 6.00000 2.65512 2.29808 2.00000
70 6.43069 2.59588 2.26301 2.00000
78 5.28118 2.59392 2.26094 2.00000
120 5.15038 2.53686 2.00000 2.00000
122 5.00000 2.53461 2.22462 2.00000
214 5.00000 2.53031 2.22280 2.00000
220 5.00000 2.52732 2.22089 2.00000
Limitation and further improvement
We used two tailed for equal sample of data for each list
Due to time complexity we are not able to go for very big number of samples though there would not be a significant deviation
Better sorting algorithm like external sorting to handle big data
Faster process like super computer could be used


