# heat transfer Assignment Help

Q1. Q = hA(T2-T1) = hw*(2*.6*.75)*(90-15) where hw is convective heat transfer coeff of water.

we find hw from the Nusselt number relation given below

here L = .60m and T film = (90+15)/2 = 52.5 oC = 325.5 K

Pr is the Prandtl number given by

From tables, Pr = 3.42

and

f =.84

Gr is Grashof number which is given by the relation:

Gr=3.28*10^11

h=644 W/m2K

Where Ts is surface temperature and water temp is the other temp required. Prandtl number can be found out by looking up the properties (evaluated at film temp.)table for water at back of book.

Where Film Temp. = (Ts+T8)/2Here:

Âµ : viscosity, (SI units : Pa s)

k : thermal conductivity, (SI units : W/(m K) )

cp : specific heat, (SI units : J/(kg K) )

Q= 43.503 KW

Q2. 1820 = hCO*3.14*D*(370-45) D is diameter

For a long horizontal cylinder:

Where h is the hCO required. C and n are constants which in the question are

Ra C n

Now Ra is Rayleigh number given by:

Ra = 3733775200*D*D*D

Hence, C =.480 n = .250 (assuming diameter of the order of cm)

The formula for Grashof number and Prandtl number is already given in the previous question.

L = D

D = 30 cm

Q3. Q = hair*(190-15)*4*3.14*(7/200)*(7/200)

Nusselt number for a sphere is given by:

Ra = 202566.06

Pr = .695

Nu = 11.62

h = 5.3 W/m2K

Here Ra and Pr number are found as shown earlier and properties (measured at film temperature already mentioned above) looked up from the tables given at the back of the book.

Nu = hD/k so we can find h after finding the Nusselt number.

Q=14.27W

Q4. Qâ€™â€™= hnitrogen*0.5*3.14*40*580/100

Where

Re = 4592.6 C =.193 m =.618

Pr = .702

h = 3.24 W/m2K

Pr numberâ€™s relationship is already given above.

From Nusselt No. We can find h and hence find the convective heat transfer.

Q=2364.8 W/m

Course Help | Physics Course Help | Physics Homework Help | Online Tutoring

Course Help Features
Course Help Services
Calculator